Abstract

One of the main drawbacks of centrifugal pumps is the reduction of their operation range to avoid cavitation. This undesired phase change phenomenon takes place as a result of high flow velocities attained in the impeller, which locally reduce the static pressure below the saturation level. Also, certain design features intended to improve pump efficiency in noncavitating conditions may tend to add even more restrictions to the working range. In the present article, a global measurement of the cavitation characteristics is performed on a test pump, following the traditional performance-drop approach, at three different impeller rates of 1800 rpm, 2100 rpm, and 2400 rpm. Special stress is made in the discussion of the required net positive suction head (NPSHr) curves obtained, deviating from common values in centrifugal machines and resembling those of an axial pump at low flow numbers due to the axial inlet with high wrap angle (high angular span of a given blade, from inlet to outlet section) featured by the tested impeller. Afterwards, the study of airborne noise signature is conducted focusing on three working points (namely, QN, 0.4QN, and 1.7QN, where QN stands for the nominal point flow rate) revealing the suitability of both tonal (blade passage frequency) and high-pitch acoustic emission to characterize flow behavior. In addition, cavitation hysteresis is introduced as a novel method to double-check the inception net positive suction head (NPSHi) determination. Finally, the acoustically measured NPSHi and the performance-based NPSHr are compared to establish the required safety margin arising from the application of the proposed methodology.

References

1.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
Norwich, VT
.
2.
Stepanoff
,
A. J.
,
1961
, “
Cavitation Dans Les Pompes Centrifuges. Pompes Centrifuges et Pompes Helices
,” Ed. Dunod, Paris, France.
3.
Gibbs
,
W. A.
,
1907
, “
The Scientific Papers of J. Willard Gibbs
,”
Nature
,
75
, pp.
361
362
.10.1038/075361a0
4.
Al Ajmi
,
M.
, and
Hindmarsh
,
M.
,
2022
, “
Thermal Suppression of Bubble Nucleation at First-Order Phase Transitions in the Early Universe
,”
Phys. Rev. D
,
106
, p. 023505.10.1103/PhysRevD.106.023505
5.
Gallo
,
M.
,
Magaletti
,
F.
, and
Casciola
,
C. M.
,
2021
, “
Heterogeneous Bubble Nucleation Dynamics
,”
J. Fluid Mech.
,
906
,
A20
.10.1017/jfm.2020.761
6.
Xu
,
W.
,
Lan
,
Z.
,
Peng
,
B.
,
Wen
,
R.
, and
Ma
,
X.
,
2015
, “
Heterogeneous Nucleation Capability of Conical Microstructures for Water Droplets
,”
RSC Adv.
,
5
(
2
), pp.
812
818
.10.1039/C4RA12352B
7.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
New York
.10.1017/CBO9781107338760
8.
Lindgren
,
H.
, and
Johnsson
,
C. A.
,
1966
, “
Cavitation Inception on Headforms, ITTC Comparative Experiments
,”
11th International Towing Tank Conference
,
Akademiförlaget/Gumpert
,
Tokyo
, Oct. 20--23.
9.
Schiavello
,
B.
, and
Sen
,
M.
,
1980
, “
On the Prediction of the Reverse Flow Onset at the Centrifugal Pump Inlet
,”
ASME 25th Int. Gas Turbine Conference
, New Orleans, LA, Mar. 10--13, pp.
261
272
.
10.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
,
Wang
,
Y.
, and
Wang
,
B.
,
2014
, “
Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump
,”
MDPI-Energies
,
7
(
2
), pp.
1050
1065
.10.3390/en7021050
11.
Huan
,
Y.
,
Liu
,
Y.
,
Li
,
X.
,
Zhu
,
Z.
,
Qu
,
J.
,
Zhe
,
L.
, and
Han
,
A.
,
2021
, “
Experimental and Numerical Investigations of Cavitation Evolution in a High-Speed Centrifugal Pump With Inducer
,”
J. Hydrodyn.
,
33
(
1
), pp.
140
149
.10.1007/s42241-021-0006-z
12.
Bachert
,
R.
,
Stoffel
,
B.
, and
Dular
,
M.
,
2010
, “
Unsteady Cavitation at the Tongue of the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061301
.10.1115/1.4001570
13.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.10.1115/1.1596238
14.
Schiavello
,
B.
, and
Visser
,
F.
,
2008
, “
Pump Cavitation – Various NPSHR Criteria, NPSH Margins, and Impeller Life Expectancy
,”
Twenty-Fifth International Pump Users Symposium
,
Houston, TX
, Feb. 23--26, pp.
113
144
.https://hdl.handle.net/1969.1/163898
15.
Chen
,
C.
,
1993
, “
Cope With Dissolved Gases in Pump Calculations
,”
Chem. Eng.
,
100
(
10
), p.
106
.
16.
Ahn
,
B. K.
,
Jeong
,
S. W.
,
Kim
,
J. H.
,
Shao
,
S.
,
Hong
,
J.
, and
Arndt
,
R. E. A.
,
2017
, “
An Experimental Investigation of Artificial Supercavitation Generated by Air Injection Behind Disk-Shaped Cavitators
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
2
), pp.
227
237
.10.1016/j.ijnaoe.2016.10.006
17.
Perissinotto
,
R. M.
,
Monte Verde
,
W.
,
Biazussi
,
J. L.
,
Bulgarelli
,
N. A. V.
,
Fonseca
,
W. D. P.
,
de Castro
,
M. S.
,
Franklin
,
E. D. M.
, and
Bannwart
,
A. C.
,
2021
, “
Flow Visualization in Centrifugal Pumps: A Review of Methods and Experimental Studies
,”
J. Pet. Sci. Eng
,
203
, p.
108582
.10.1016/j.petrol.2021.108582
18.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2003
, “
Unsteady PIV Flow Field Analysis of a Centrifugal Pump Impeller Under Rotating Cavitation
,”
Fifth International Symposium on Cavitation
,
Osaka
, Nov. 1--4.
19.
McNulty
,
P. J.
, and
Pearsall
,
I. S.
,
1982
, “
Cavitation Inception in Pumps
,”
ASME J. Fluids Eng.
,
104
(
1
), pp.
99
104
.10.1115/1.3240865
20.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
21.
Schnerr
,
G. H.
,
Gh
,
M. M.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
4th International Conference on Multiphase Flow
,
New Orleans, LA
, May 27-June 1, pp.
1
12
.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
22.
Deng
,
S. S.
,
Li
,
G. D.
,
Guan
,
J. F.
,
Chen
,
X. C.
, and
Liu
,
L. X.
,
2019
, “
Numerical Study of Cavitation in Centrifugal Pump Conveying Different Liquid Materials
,”
Results Phys.
,
12
, pp.
1834
1839
.10.1016/j.rinp.2019.02.009
23.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
24.
Oshima
,
M.
, and
Kawaguchi
,
K.
,
1963
, “
Experimental Study of Axial and Mixed Flow Pumps
,”
Proceedings of the IAHR Symposium on Cavitation and Hydraulic Machinery
,
Tohoku University
,
Sendai
, Sept. 1--5.
25.
Stephen
,
C.
,
Arumugam
,
D.
, and
Kumaraswamy
,
S.
,
2022
, “
Assessment of Noise Signature for a Cavitating Centrifugal Pump
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042105
.10.1115/1.4052618
26.
Lu
,
Y.
,
Tan
,
L.
,
Han
,
Y.
, and
Liu
,
M.
,
2022
, “
Cavitation-Vibration Correlation of a Mixed Flow Pump Under Steady State and Fast Start-Up Conditions by Experiment
,”
Ocean Eng.
,
251
, p.
111158
.10.1016/j.oceaneng.2022.111158
27.
Han
,
H.
,
Jeon
,
S.
,
Kim
,
Y.
,
Lee
,
C.
,
Lee
,
D.
,
Lee
,
G.
, and
Lee
,
S.
,
2022
, “
Monitoring of the Cavitation Inception Speed and Sound Pressure Level of the Model Propeller Using Accelerometer Attached to the Model Ship in the Cavitation Tunnel
,”
Ocean Eng.
,
266
, p.
112906
.10.1016/j.oceaneng.2022.112906
28.
Parrondo
,
J. L.
,
Velarde
,
S.
, and
Santolaria
,
C.
,
1998
, “
Development of a Predictive Maintenance System for a Centrifugal Pump
,”
J. Quality Maint. Eng.
,
4
(
3
), pp.
198
211
.10.1108/13552519810223490
29.
Gaisser
,
L.
,
Kirschner
,
O.
, and
Riedelbauch
,
S.
,
2023
, “
Cavitation Detection in Hydraulic Machinery by Analyzing Acoustic Emissions Under Strong Domain Shifts Using Neural Networks
,”
Phys. Fluids
,
35
(
2
), p.
027128
.10.1063/5.0137068
30.
McAllister
,
E. W.
,
2014
,
Pipeline Rules of Thumb Handbook
,
Gulf Professional Publishing
,
Woburn, MA
.
31.
British Standards Institution,
1977
, “
BS 5316-2. Acceptance Tests for Centrifugal Mixed Flow and Axial Pumps Part 2: Class B Tests
,”
UK
.
32.
Tan
,
C.
, and
Dong
,
F.
,
2023
, “
Sensor Instrumentation for Flow Measurement
,”
Encyclopedia of Sensors and Biosensors, Elsevier, Cambridge, MA
, 1st Ed., Vol.
1–4
, pp.
536
554
.
33.
Keller
,
J.
,
Möller
,
G.
, and
Boes
,
R. M.
,
2014
, “
PIV Measurements of Air-Core Intake Vortices
,”
Flow Meas. Instrum.
,
40
, pp.
74
81
.10.1016/j.flowmeasinst.2014.08.004
34.
DeGraff
,
B. A.
, and
Demas
,
J. N.
, “
Luminescence-Based Oxygen Sensors
,”
Reviews in Fluorescence
, Vol.
2005
,
Springer US
,
Boston, MA
, pp.
125
51
.
35.
Ambrose
,
D.
, and
Lawrenson
,
I. J.
,
1972
, “
The Vapour Pressure of Water
,”
J. Chem. Thermodyn.
,
4
(
5
), pp.
755
761
.10.1016/0021-9614(72)90049-3
36.
Joit Commitee for Guides in Metrology (BIPM)
,
2008
, “
Evaluation Measurement Data — Guide to Expression Uncertainty Measurement
”,
BIPM
,
Paris, France
.
37.
Kuiper
,
G.
,
2012
,
Cavitation in Ship Propulsion
,
TU Delft OpenCourseWare
,
Delft, The Netherlands
.
38.
Kercan
,
V.
, and
Schweiger
,
F.
,
1979
, “
Cavitation Phenomena Detection by Different Methods
,”
Proceedings of the 6th Conference on Fluid Machinery
,
Akademiai Kiado
,
Budapest
, Sept. 17--22, pp.
535
544
.https://ui.adsabs.harvard.edu/abs/1979flma.conf..535K/abstract
39.
Thamsen
,
P. U.
,
Bubelach
,
T.
,
Pensler
,
T.
, and
Springer
,
P.
,
2008
, “
Cavitation in Single-Vane Sewage Pumps
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
6
.10.1155/2008/354020
40.
Al-Obaidi
,
A. R.
,
2019
, “
Investigation of Effect of Pump Rotational Speed on Performance and Detection of Cavitation Within a Centrifugal Pump Using Vibration Analysis
,”
Heliyon
,
5
(
6
), p.
e01910
.10.1016/j.heliyon.2019.e01910
41.
Ng
,
S. L.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
42.
Yun
,
L.
,
Rongsheng
,
Z.
, and
Dezhong
,
W.
,
2020
, “
A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility
,”
Nucl. Eng. Technol.
,
52
(
11
), pp.
2471
2478
.10.1016/j.net.2020.04.007
43.
Cui
,
B.
,
Han
,
X.
, and
An
,
Y.
,
2022
, “
Numerical Simulation of Unsteady Cavitation Flow in a Low-Specific-Speed Centrifugal Pump With an Inducer
,”
J. Mar. Sci. Eng.
,
10
(
5
), p.
630
.10.3390/jmse10050630
44.
Forsthoffer
,
M. S.
,
2017
,
Pumps. Forsthoffer's More Best Practices for Rotating Equipment
,
Butterworth-Heinemann
,
Waltham, MA
.
45.
Kissing
,
J.
,
Wegt
,
S.
,
Jakirlic
,
S.
,
Kriegseis
,
J.
,
Hussong
,
J.
, and
Tropea
,
C.
,
2020
, “
Leading Edge Vortex Formation and Detachment on a Flat Plate Undergoing Simultaneous Pitching and Plunging Motion: Experimental and Computational Study
,”
Int. J. Heat Fluid Flow
,
86
, p.
108726
.10.1016/j.ijheatfluidflow.2020.108726
46.
Brennen
,
C. E.
,
2016
, “
On the Dynamics of a Cavitating Pump
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
052018
.10.1088/1755-1315/49/5/052018
47.
Arakeri
,
V. H.
,
1999
, “
Contributions to Some Cavitation Problems in Turbomachinery
,”
Sadhana
,
24
(
6
), pp.
453
483
.10.1007/BF02745623
48.
Mousmoulis
,
G.
,
Karlsen-Davies
,
N.
,
Aggidis
,
G.
,
Anagnostopoulos
,
I.
, and
Papantonis
,
D.
,
2019
, “
Experimental Analysis of Cavitation in a Centrifugal Pump Using Acoustic Emission, Vibration Measurements and Flow Visualization
,”
Eur. J. Mech. - B/Fluids
,
75
, pp.
300
311
.10.1016/j.euromechflu.2018.10.015
49.
Staianao
,
M. A.
,
1991
, “
Sound Level Measurements in Background Noise
,”
J. Acoust. Soc. Am.
,
89
(
4B_Supplement
), p.
1948
.10.1121/1.2029635
50.
Shen
,
Y.
,
Chen
,
W.
,
Zhang
,
L.
,
Wu
,
Y.
,
Kou
,
S.
, and
Zhao
,
G.
,
2022
, “
The Dynamics of Cavitation Bubbles in a Sealed Vessel
,”
Ultrason. Sonochem.
,
82
, p.
105865
.10.1016/j.ultsonch.2021.105865
51.
Qu
,
Z.
,
Li
,
Y.
,
Pan
,
J.
,
Li
,
D.
,
Yang
,
C.
,
Wang
,
X.
, and
Guo
,
Y.
,
2022
, “
Study on Pressure Surge Characteristics of Reactor Coolant Pump Shaft Stuck Accident Condition Based on Wavelet Analysis
,”
Nucl. Eng. Des.
,
397
, p.
111921
.10.1016/j.nucengdes.2022.111921
52.
Pearsall
,
I. S.
,
1966
, “
Acoustic Detection of Cavitation
,”
Proceedings of the Institution of Mechanical Engineers
,
London, UK
, Vol.
181
, pp.
1
8
.10.1243/PIME_CONF_1966_181_004_02
53.
Des Chênes
,
P.
,
1806
, “
Mémoire Sur Les Séries et Sur L'intégration Complète D'une Équation Aux Différences Partielles Linéaire du Second Ordre, à Coefficients Constants
,”
Mémoires Présentés à L'Institut Des Sci., Lettres et Arts, Par Divers Savants, et Lus Dans Ses Assemblées Sciences, Mathématiques et Physiques (Savants Étrangers)
.
Cambridge University Press
,
Cambridge, UK
.
54.
Braisted
,
D. M.
, and
Brennen
,
C. E.
,
1980
, “
Auto-Oscillation of Cavitating Inducers
,”
Polyphase Flow Transp. Technol., The Symposium on Poliphase Flow and Transport Technology
, San Francisco, CA, Aug. 13--15, pp.
157
166
.
You do not currently have access to this content.