Abstract

This study investigates the thermodynamic effects of cavitation, focusing on pressure and temperature distributions on a 0.5 caliber hydrofoil surface. To highlight the impact of cavitation with thermodynamic effects, a comparison was conducted between predicted values from the extensional Schnerr–Sauer (ESS) model established in this work and published numerical and experimental results. To properly account for thermal effects, the SS model was modified by using the minimum of the inertial growth rate (R˙i) and a newly derived thermal growth rate (R˙t). This modification accounts for the transition from inertially governed to thermally governed bubble growth as the constant superheat supply assumption (psatp)/ρl breaks down. Incorporating the modified cavitation model and a realizable turbulence model effectively captured pressure and thermal characteristics, including the temperature drop within cavities due to evaporative cooling effects. The pressure and temperature profiles on the hydrofoil surface were compared with the published experimental data and numerical results. The modified model demonstrated satisfactory alignment with the experimental data, and the temperature profiles slightly outperformed those of the previous numerical data. A slight reduction in cavity size due to thermal effects was observed, attributed to temperature drops affecting local vapor pressure and cavitation intensity, leading to a decrease in the liquid volume fraction within cavities.

References

1.
Blake
,
J. R.
, and
Gibson
,
D. C.
,
1987
, “
Cavitation Bubbles Near Boundaries
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
99
123
.10.1146/annurev.fl.19.010187.000531
2.
Blake
,
J. R.
,
Leppinen
,
D. M.
, and
Wang
,
Q.
,
2015
, “
Cavitation and Bubble Dynamics: The Kelvin Impulse and Its Applications
,”
Interface Focus
,
5
(
5
), p.
20150017
.10.1098/rsfs.2015.0017
3.
Ohl
,
C. D.
,
Kurz
,
T.
,
Geisler
,
R.
,
Lindau
,
O.
, and
Lauterborn
,
W.
,
1999
, “
Bubble Dynamics, Shock Waves and Sonoluminescence
,”
Philos. Trans. R. Soc., A
,
357
(
1751
), pp.
269
294
.10.1098/rsta.1999.0327
4.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
Cambridge
.
5.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
D'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
,
21
(
5
), pp.
893
899
.10.2514/1.12582
6.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Wang
,
K.
,
2015
, “
Effects of Fluid Thermophysical Properties on Cavitating Flows
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4239
4246
.10.1007/s12206-015-0920-5
7.
Deng
,
Y.
,
Feng
,
J.
,
Wan
,
F.
,
Shen
,
X.
, and
Xu
,
B.
,
2020
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulation of Cavitating Flow With Emphasis on Temperature Effect
,”
Processes
,
8
(
8
), p.
997
.10.3390/pr8080997
8.
Chen
,
T.
,
Chen
,
H.
,
Huang
,
B.
,
Liang
,
W.
,
Xiang
,
L.
, and
Wang
,
G.
,
2018
, “
Thermal Transition and Its Evaluation of Liquid Hydrogen Cavitating Flow in a Wide Range of Free-Stream Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1277
1289
.10.1016/j.ijheatmasstransfer.2018.06.096
9.
Chen
,
T.
,
Chen
,
H.
,
Liang
,
W.
,
Huang
,
B.
, and
Xiang
,
L.
,
2019
, “
Experimental Investigation of Liquid Nitrogen Cavitating Flows in Converging-Diverging Nozzle With Special Emphasis on Thermal Transition
,”
Int. J. Heat Mass Transfer
,
132
, pp.
618
630
.10.1016/j.ijheatmasstransfer.2018.11.157
10.
Chen
,
T.
,
Mu
,
Z.
,
Huang
,
B.
,
Zhang
,
M.
, and
Wang
,
G.
,
2021
, “
Dynamic Instability Analysis of Cavitating Flow With Liquid Nitrogen in a Converging-Diverging Nozzle
,”
Appl. Therm. Eng.
,
192
, p.
116870
.10.1016/j.applthermaleng.2021.116870
11.
Wei
,
A.
,
Yu
,
L.
,
Qiu
,
L.
, and
Zhang
,
X.
,
2022
, “
Cavitation in Cryogenic Fluids: A Critical Research Review
,”
Phys Fluids
,
34
(
10
), p.
101303
.10.1063/5.0102876
12.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X. A.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperatures With Special Emphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.10.1016/j.ijheatmasstransfer.2016.05.107
13.
Fan
,
Y.
,
Chen
,
T.
,
Liang
,
W.
,
Wang
,
G.
, and
Huang
,
B.
,
2022
, “
Numerical and Theoretical Investigations of the Cavitation Performance and Instability for the Cryogenic Inducer
,”
Renewable Energy
,
184
, pp.
291
305
.10.1016/j.renene.2021.11.076
14.
Liang
,
W.
,
Chen
,
T.
,
Wang
,
G.
, and
Huang
,
B.
,
2021
, “
Experimental Investigations on Transient Dynamics of Cryogenic Cavitating Flows Under Different Free-Stream Conditions
,”
Int. J. Heat Mass Transfer
,
178
, p.
121537
.10.1016/j.ijheatmasstransfer.2021.121537
15.
Sales
,
L.
, and
Pasini
,
A.
,
2021
, “
Definition and Validation of Cavitating Rocket Turbopump Transmission Matrices for Modular Multi Actuator Disk Approach
,”
ASME J. Fluids Eng.
,
143
(
12
), p.
121110
.10.1115/1.4052045
16.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2008
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.10.1115/1.2969426
17.
Tsujimoto
,
Y.
,
2007
,
Cavitation Instabilities in Turbopump Inducers
,
Springer
,
Vienna
, pp.
169
190
.
18.
Moore
,
R. D.
, and
Ruggeri
,
R. S.
,
1969
, “
Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures, and Rotative Speeds
,”
NASA
,
Washington D.C
, Report No. NASA-TN-D-5292.https://ntrs.nasa.gov/api/citations/19690019787/downloads/19690019787.pdf
19.
Stahl
,
H. A.
, and
Stepanoff
,
A. J.
,
1956
, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
ASME Trans. Am. Soc. Mech. Eng.
,
78
(
8
), pp.
1691
1693
.10.1115/1.4014152
20.
Spraker
,
W. A.
,
1965
, “
The Effects of Fluid Properties on Cavitation in Centrifugal Pumps
,”
ASME J. Eng. Power
,
87
(
3
), pp.
309
318
.10.1115/1.3678264
21.
Zhang
,
X.
, and
Jiakai
,
Z.
,
2023
, “
Cavitation Flow of Cryogenic Fluids
,”
Handbook of Multiphase Flow Science and Technology
,
G. H.
Yeoh
and
J. B.
Joshi
, eds.,
Springer Nature Singapore
,
Singapore
, pp.
543
589
.
22.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.10.1146/annurev.fl.09.010177.001045
23.
Franc
,
J.-P.
, and
Pellone
,
C.
,
2007
, “
Analysis of Thermal Effects in a Cavitating Inducer Using Rayleigh Equation
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
974
983
.10.1115/1.2746919
24.
Franc
,
J.-P.
,
Boitel
,
G.
,
Riondet
,
M.
,
Janson
,
E.
,
Ramina
,
P.
, and
Rebattet
,
C.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer-Part II: On-Board Measurements of Temperature Depression Within Leading Edge Cavities
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021304
.10.1115/1.4001007
25.
Gelder
,
T. F.
,
Moore
,
R. D.
, and
Ruggeri
,
R. S.
,
1966
, “
Cavitation Similarity Considerations Based on Measured Pressure and Temperature Depressions in Cavitated Regions of Freon 114
,”
NASA
,
Washington D.C
, Report No. NASA-TN-D-3509.https://ntrs.nasa.gov/api/citations/19660022062/downloads/19660022062.pdf
26.
Moore
,
R. D.
, and
Ruggeri
,
R. S.
,
1968
, “
Prediction of Thermodynamic Effects of Developed Cavitation Based on Liquid-Hydrogen and Freon-114 Data in Scaled Venturis
,”
NASA
,
Washington D.C
, Report No. NASA-TN-D-4899. https://ntrs.nasa.gov/api/citations/19690000739/downloads/19690000739.pdf
27.
Hord
,
J.
,
Anderson
,
L.
, and
Hall
,
W. J.
,
1972
, “
Cavitation in Liquid Cryogens. 1: Venturi
,”
NASA
,
Washington D.C
, Report No. NASA-CR-2054.https://ntrs.nasa.gov/api/citations/19720016713/downloads/19720016713.pdf
28.
Sarósdy
,
L. R.
, and
Acosta
,
A. J.
,
1961
, “
Note on Observations of Cavitation in Different Fluids
,”
ASME J. Basic Eng.
,
83
(
3
), pp.
399
400
.10.1115/1.3658979
29.
Franc
,
J.-P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
30.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens. 2: Hydrofoil
,”
NASA
,
Washington D.C
, Report No. NASA-CR-2156.https://ntrs.nasa.gov/api/citations/19730007528/downloads/19730007528.pdf
31.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a NACA 0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
32.
Iga
,
Y.
,
Okajima
,
J.
,
Yamaguchi
,
Y.
,
Hirotoshi
,
S.
, and
Ito
,
Y.
,
2023
, “
Thermodynamic Suppression Effect of Cavitation Arising in a Hydrofoil in 140°C Hot Water
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011207
.10.1115/1.4055600
33.
Ito
,
Y.
,
Nagayama
,
T.
, and
Nagasaki
,
T.
, “
Cavitation Patterns on a Plano-Convex Hydrofoil in a Highspeed Cryogenic Cavitation Tunnel
,”
Proceedings of the 7th International Symposium on Cavitation
(
CAV2009
),
Ann Arbor, Michigan
, Aug. 17–22, pp.
1
11
. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/84257/CAV2009?final61.pdf?sequence=1&isAllowed=y
34.
Gustavsson
,
J. P. R.
,
Denning
,
K. C.
, and
Segal
,
C.
,
2008
, “
Hydrofoil Cavitation Under Strong Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091303
.10.1115/1.2953297
35.
Kelly
,
S.
,
Segal
,
C.
, and
Peugeot
,
J. W.
,
2011
, “
Simulation of Cryogenics Cavitation
,”
AIAA J.
,
49
(
11
), pp.
2502
2510
.10.2514/1.J051033
36.
Petkovšek
,
M.
, and
Dular
,
M.
,
2013
, “
IR Measurements of the Thermodynamic Effects in Cavitating Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
756
763
.10.1016/j.ijheatfluidflow.2013.10.005
37.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
,
1997
, “
Numerical Modeling of the Thermodynamic Effects of Cavitation
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
420
427
.10.1115/1.2819150
38.
Fruman
,
D. H.
,
Reboud
,
J. L.
, and
Stutz
,
B.
,
1999
, “
Estimation of Thermal Effects in Cavitation of Thermosensible Liquids
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3195
3204
.10.1016/S0017-9310(99)00005-8
39.
Saurel
,
R.
, and
Lemetayer
,
O.
,
2001
, “
A Multiphase Model for Compressible Flows With Interfaces, Shocks, Detonation Waves and Cavitation
,”
J. Fluid Mech.
,
431
, pp.
239
271
.10.1017/S0022112000003098
40.
Ishimoto
,
J.
, and
Kamijo
,
K.
,
2004
, “
Numerical Simulation of Cavitating Flow of Liquid Helium in a Vertical Converging-Diverging Nozzle
,”
AIP Conf. Proc.
,
710
, pp.
1060
1067
.10.1063/1.1774790
41.
Zein
,
A.
,
Hantke
,
M.
, and
Warnecke
,
G.
,
2010
, “
Modeling Phase Transition for Compressible Two-Phase Flows Applied to Metastable Liquids
,”
J. Comput. Phys.
,
229
(
8
), pp.
2964
2998
.10.1016/j.jcp.2009.12.026
42.
Petitpas
,
F.
,
Massoni
,
J.
,
Saurel
,
R.
,
Lapebie
,
E.
, and
Munier
,
L.
,
2009
, “
Diffuse Interface Model for High Speed Cavitating Underwater Systems
,”
Int. J. Multiphase Flow
,
35
(
8
), pp.
747
759
.10.1016/j.ijmultiphaseflow.2009.03.011
43.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.10.1016/j.ijmultiphaseflow.2012.11.008
44.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulations of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
331
340
.10.1115/1.1362671
45.
Saurel
,
R.
,
Cocchi
,
J. P.
, and
Butler
,
P. B.
,
1999
, “
Numerical Study of Cavitation in the Wake of a Hypervelocity Underwater Projectile
,”
J. Propul. Power
,
15
(
4
), pp.
513
522
.10.2514/2.5473
46.
Barre
,
S.
,
Rolland
,
J.
,
Boitel
,
G.
,
Goncalves
,
E.
, and
Fortes Patella
,
R.
,
2009
, “
Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,”
Eur. J. Mech. - B/Fluids
,
28
(
3
), pp.
444
464
.10.1016/j.euromechflu.2008.09.001
47.
Goncalves
,
E.
,
Champagnac
,
M.
, and
Fortes-Patella
,
R.
,
2010
, “
Comparison of Numerical Solvers for Cavitating Flows
,”
Int. J. Comput. Fluid Dyn.
,
24
(
6
), pp.
201
216
.10.1080/10618562.2010.521131
48.
Sinibaldi
,
E.
,
Beux
,
F.
, and
Salvetti
,
M. V.
,
2006
, “
A Numerical Method for 3D Barotropic Flows in Turbomachinery
,”
Flow, Turbul. Combust.
,
76
(
4
), pp.
371
381
.10.1007/s10494-006-9025-7
49.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
50.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the 3rd International Symposium on Cavitation
,
Grenoble, France
, Apr. 7–10, pp. 307–314.
51.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
52.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2000
, “
Unsteady Cavitating Flow - a New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics
,”
2000 ASME Fluids Engineering Summer Conference
,
Boston, MA
, June 11–15, pp. 1–7.https://www.researchgate.net/publication/295743779_Unsteady_cavitating_flow__A_new_cavitation_model_based_on_a_modified_front_capturing_method_and_bubble_dynamics
53.
Senocak
,
I.
, and
Shyy
,
W.
,
2004
, “
Interfacial Dynamics‐Based Modelling of Turbulent Cavitating Flows, Part‐1: Model Development and Steady‐State Computations
,”
Int. J. Numer. Methods Fluids
,
44
(
9
), pp.
975
995
.10.1002/fld.692
54.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
, May 30–June 3, Paper No. 152.
55.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.10.1115/1.1883238
56.
Utturkar
,
Y.
,
Thakur
,
S.
, and
Shyy
,
W.
,
2005
, “
Computational Modeling of Thermodynamic Effects in Cryogenic Cavitation
,”
AIAA
Paper No. 2005-1286.10.2514/6.2005-1286
57.
Huang
,
B.
,
Wu
,
Q.
, and
Wang
,
G.
,
2014
, “
Numerical Investigation of Cavitating Flow in Liquid Hydrogen
,”
Int. J. Hydrogen Energy
,
39
(
4
), pp.
1698
1709
.10.1016/j.ijhydene.2013.11.025
58.
Goncalves
,
E.
,
2014
, “
Modeling for Non Isothermal Cavitation Using 4-Equation Models
,”
Int. J. Heat Mass Transfer
,
76
, pp.
247
262
.10.1016/j.ijheatmasstransfer.2014.04.065
59.
Eric
,
L.
,
Marcia
,
H.
, and
Mark
,
M.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
,
National Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology
,
Gaithersburg, MD
.
60.
Assudani
,
R. K.
,
Huber
,
R.
,
Rutschmann
,
P.
, and
Dewan
,
A.
,
2009
, “
A Comparison of RANS-Based Computations and Large Eddy Simulation of Turbulent Cavitating Flow
,”
Proceedings of the 33rd IAHR World Congress
,
Vancouver, AB, Canada
, Aug. 10–14, pp.
6360
6366
.https://web.iitd.ac.in/~adewan/Dewan_2009_Ravi_IAHR_Canada.pdf
61.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries, Incorporated
,
Northville, MI
.
62.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
63.
Iaccarino
,
G.
,
2001
, “
Predictions of a Turbulent Separated Flow Using Commercial CFD Codes
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
819
828
.10.1115/1.1400749
64.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Ltd
,
Harlow, UK
.
65.
Chen
,
T.
,
Wang
,
G.
,
Huang
,
B.
, and
Wang
,
K.
,
2015
, “
Numerical Study of Thermodynamic Effects on Liquid Nitrogen Cavitating Flows
,”
Cryogenics
,
70
, pp.
21
27
.10.1016/j.cryogenics.2015.04.009
66.
Chen
,
T. R.
,
Wang
,
G. Y.
,
Huang
,
B.
,
Li
,
D. Q.
,
Ma
,
X. J.
, and
Li
,
X. L.
,
2015
, “
Effects of Physical Properties on Thermo-Fluids Cavitating Flows
,”
J. Phys.: Conf. Ser.
, 656, p.
012181
.10.1088/1742?6596/656/1/012181
67.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubbles in Superheated Liquids
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.10.1063/1.1721668
68.
Oresta
,
P.
,
Verzicco
,
R.
,
Lohse
,
D.
, and
Prosperetti
,
A.
,
2009
, “
Heat Transfer Mechanisms in Bubbly Rayleigh-Bénard Convection
,”
Phys. Rev. E
,
80
(
2
), p.
026304
.10.1103/PhysRevE.80.026304
69.
Zhu
,
J.
,
Chen
,
Y.
,
Zhao
,
D.
, and
Zhang
,
X.
,
2015
, “
Extension of the Schnerr–Sauer Model for Cryogenic Cavitation
,”
Eur. J. Mech. - B/Fluids
,
52
, pp.
1
10
.10.1016/j.euromechflu.2015.01.008
70.
ANSYS Inc.
,
2021
, “
ANSYS FLUENT Theory Guide
,”
Canonsburg, PA
.
71.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington D.C
.
72.
Vanka
,
S. P.
,
1986
, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
,
65
(
1
), pp.
138
158
.10.1016/0021-9991(86)90008-2
73.
Tivert
,
T.
,
Borg
,
A.
,
Marimon
,
J.
, and
Davidson
,
L.
,
2007
, “
Wind-Driven Rivulet Over an Edge With Break-Up
,”
6th International Conference on Multiphase Flow
,
Leipzig, Germany
, July 9–13, pp. 1–9.https://scispace.com/pdf/wind-driven-rivulet-over-an-edge-with-break-up-5dph7spi35.pdf
74.
Zeng
,
M.
, and
Tao
,
W. Q.
,
2003
, “
A Comparison Study of the Convergence Characteristics and Robustness for Four Variants of SIMPLE‐Family at Fine Grids
,”
Eng. Comput.
,
20
(
3
), pp.
320
340
.10.1108/02644400310467234
75.
Zhang
,
S.
,
Li
,
X.
, and
Zhu
,
Z.
,
2018
, “
Numerical Simulation of Cryogenic Cavitating Flow by an Extended Transport-Based Cavitation Model With Thermal Effects
,”
Cryogenics
,
92
, pp.
98
104
.10.1016/j.cryogenics.2018.04.008
76.
Li
,
X.
,
Shen
,
T.
,
Li
,
P.
,
Guo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Extended Compressible Thermal Cavitation Model for the Numerical Simulation of Cryogenic Cavitating Flow
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
10104
10118
.10.1016/j.ijhydene.2020.01.192
77.
Kim
,
H.
, and
Kim
,
C.
,
2021
, “
A Physics-Based Cavitation Model Ranging From Inertial to Thermal Regimes
,”
Int. J. Heat Mass Transfer
,
181
, p.
121991
.10.1016/j.ijheatmasstransfer.2021.121991
78.
Gopalakrishnan Meena
,
M.
, and
Taira
,
K.
,
2021
, “
Identifying Vortical Network Connectors for Turbulent Flow Modification
,”
J. Fluid Mech.
,
915
, p.
A10
.10.1017/jfm.2021.35
79.
Krueger
,
P. S.
,
Hahsler
,
M.
,
Olinick
,
E. V.
,
Williams
,
S. H.
, and
Zharfa
,
M.
,
2019
, “
Quantitative Classification of Vortical Flows Based on Topological Features Using Graph Matching
,”
Proc. R. Soc. A
,
475
(
2228
), p.
20180897
.10.1098/rspa.2018.0897
80.
Zhu
,
J.
,
Zhao
,
D.
,
Xu
,
L.
, and
Zhang
,
X.
,
2016
, “
Interactions of Vortices, Thermal Effects and Cavitation in Liquid Hydrogen Cavitating Flows
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
614
631
.10.1016/j.ijhydene.2015.10.042
You do not currently have access to this content.