Abstract

This study evaluates the reconstruction of three-dimensional steady and unsteady flow fields in a centrifugal impeller using proper orthogonal decomposition (POD) and sparse sensing techniques. This approach is driven by the fundamental challenges in turbomachinery, where spatial and instrumentation limitations greatly restrict the range of measurable physical quantities. Using POD, this study seeks to efficiently extract the dominant flow structures, enabling their accurate reconstruction even from sparse sensor data. For time-averaged flow, the first two POD modes account for 99.4% of the energy, capturing deviations from the design flow rate and localized variations in secondary flow. Optimal sensor placement algorithms, i.e., determinant-based greedy (DG) and Bayesian determinant-based greedy (BDG) methods, achieved accurate flow field estimation with a minimal number of sensors. For time-varying flow, the first two modes capture the interaction between the blade and tongue, and the third and fourth modes represent higher-order harmonics of the first and second modes. The BDG method outperformed others in selecting sensor locations, leading to smaller estimation errors in both velocity and pressure fields. Incorporating Bayesian estimation into the reconstruction process further enhances robustness, ensuring reliable results even in the presence of noise. This research provides a deeper understanding of flow dynamics, even with limited measurement data, and holds the potential for controlling and optimizing turbomachinery in practical applications such as real-time monitoring, anomaly detection, and feedback control systems.

References

1.
Paternina-Verona
,
D. A.
,
Coronado-Hernández
,
O. E.
,
Pérez-Sánchez
,
M.
, and
Ramos
,
H. M.
,
2024
, “
Real-Time Analysis and Digital Twin Modeling for CFD-Based Air Valve Control During Filling Procedures
,”
Water
,
16
(
21
), p.
3015
.10.3390/w16213015
2.
Yang
,
B.
,
Yang
,
S.
,
Lv
,
Z.
,
Wang
,
F.
, and
Olofsson
,
T.
,
2022
, “
Application of Digital Twins and Metaverse in the Field of Fluid Machinery Pumps and Fans: A Review
,”
Sensors
,
22
(
23
), p.
9294
.10.3390/s22239294
3.
Mitkov
,
R.
,
Pantusheva
,
M.
,
Petrova-Antonova
,
D.
,
Naserentin
,
V.
, and
Logg
,
A.
,
2024
, “
The Role of Computational Fluid Dynamics Within City Digital Twins: Opportunities and Challenges
,”
ISPRS Ann. Photogramm., Remote Sens. Spatial Inf. Sci.
,
X-4/W4-2024
, pp.
131
136
.10.5194/isprs-annals-X-4-W4-2024-131-2024
4.
Xie
,
R.
,
Chen
,
M.
,
Liu
,
W.
,
Jian
,
H.
, and
Shi
,
Y.
,
2021
, “
Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review
,”
Sustainability
,
13
(
5
), p.
2495
.10.3390/su13052495
5.
Willcox
,
K.
,
2006
, “
Unsteady Flow Sensing and Estimation Via the Gappy Proper Orthogonal Decomposition
,”
Comput. Fluids
,
35
(
2
), pp.
208
226
.10.1016/j.compfluid.2004.11.006
6.
Mokhasi
,
P.
,
Rempfer
,
D.
, and
Kandala
,
S.
,
2009
, “
Predictive Flow-Field Estimation
,”
Phys. D: Nonlinear Phenom.
,
238
(
3
), pp.
290
308
.10.1016/j.physd.2008.10.009
7.
Manohar
,
K.
,
Brunton
,
B. W.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2017
, “
Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns
,”
IEEE Control Syst.
,
38
, pp.
63
86
.10.1109/MCS.2018.2810460
8.
Mifsud
,
M.
,
Vendl
,
A.
,
Hansen
,
L.-U.
, and
Görtz
,
S.
,
2019
, “
Fusing Wind-Tunnel Measurements and CFD Data Using Constrained Gappy Proper Orthogonal Decomposition
,”
Aerosp. Sci. Technol.
,
86
, pp.
312
326
.10.1016/j.ast.2018.12.036
9.
Callaham
,
J. L.
,
Maeda
,
K.
, and
Brunton
,
S. L.
,
2019
, “
Robust Flow Reconstruction From Limited Measurements Via Sparse Representation
,”
Phys. Rev. Fluids
,
4
(
10
), p.
103907
.10.1103/PhysRevFluids.4.103907
10.
Mohammadi
,
A.
,
Shimoyama
,
K.
,
Karimi
,
M. S.
, and
Raisee
,
M.
,
2021
, “
Efficient Uncertainty Quantification of CFD Problems by Combination of Proper Orthogonal Decomposition and Compressed Sensing
,”
Appl. Math. Modell.
,
94
, pp.
187
225
.10.1016/j.apm.2021.01.012
11.
Yamada
,
K.
,
Saito
,
Y.
,
Nankai
,
K.
,
Nonomura
,
T.
,
Asai
,
K.
, and
Tsubakino
,
D.
,
2021
, “
Fast Greedy Optimization of Sensor Selection in Measurement With Correlated Noise
,”
Mech. Syst. Signal Process.
,
158
, p.
107619
.10.1016/j.ymssp.2021.107619
12.
Dubois
,
P.
,
Gomez
,
T.
,
Planckaert
,
L.
, and
Perret
,
L.
,
2022
, “
Machine Learning for Fluid Flow Reconstruction From Limited Measurements
,”
J. Comput. Phys.
,
448
, p.
110733
.10.1016/j.jcp.2021.110733
13.
Xue
,
X.
, and
Wang
,
T.
,
2019
, “
Experimental and Computational Analysis of the Unstable Flow Structure in a Centrifugal Compressor With a Vaneless Diffuser
,”
Chin. J. Mech. Eng. (Engl. Ed.)
,
32
(
1
), p.
65
.10.1186/s10033-019-0379-x
14.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA J.
,
46
(
7
), pp.
1803
1813
.10.2514/1.35374
15.
Luo
,
J.
,
Zhu
,
Y.
,
Tang
,
X.
, and
Liu
,
F.
,
2017
, “
Flow Reconstructions and Aerodynamic Shape Optimization of Turbomachinery Blades by POD-Based Hybrid Models
,”
Sci. China Technol. Sci.
,
60
(
11
), pp.
1658
1673
.10.1007/s11431-016-9093-y
16.
Zhou
,
K.
,
Zhou
,
L.
,
Zhao
,
S.
,
Qiang
,
X.
,
Liu
,
Y.
, and
Wen
,
X.
,
2021
, “
Data-Driven Method for Flow Sensing of Aerodynamic Parameters Using Distributed Pressure Measurements
,”
AIAA J.
,
59
(
9
), pp.
3504
3516
.10.2514/1.J060118
17.
Chen
,
C.
,
Song
,
P.
,
Feng
,
T.
,
Li
,
Y.
,
Liao
,
Y.
, and
Wang
,
C.
,
2021
, “
Analysis of Unsteady Flow in Compressor Cascade Based on Modal POD Methods
,”
J. Phys.: Conf. Ser.
,
2030
(
1
), p.
012068
.10.1088/1742-6596/2030/1/012068
18.
Halko
,
N.
,
Martinsson
,
P.-G.
, and
Tropp
,
J. A.
,
2011
, “
Finding Structure With Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions
,”
SIAM Rev.
,
53
(
2
), pp.
217
288
.10.1137/090771806
19.
Levey
,
A.
, and
Lindenbaum
,
M.
,
2000
, “
Sequential Karhunen-Loeve Basis Extraction and Its Application to Images
,”
IEEE Trans. Image Process.
,
9
(
8
), pp.
1371
1374
.10.1109/83.855432
20.
Arora
,
R.
,
Cotter
,
A.
,
Livescu
,
K.
, and
Srebro
,
N.
,
2012
, “
Stochastic Optimization for PCA and PLS
,”
2012 50th Annual Allerton Conference on Communication, Control, and Computing
(
Allerton
), Monticello, IL, Oct. 1--5, pp.
861
868
.10.1109/Allerton.2012.6483308
21.
Jayaraman
,
B.
, and
Mamun
,
S. M. A. A.
,
2020
, “
On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
,”
Sensors
,
20
(
13
), p.
3752
.10.3390/s20133752
22.
Saito
,
Y.
,
Nonomura
,
T.
,
Yamada
,
K.
,
Nakai
,
K.
,
Nagata
,
T.
,
Asai
,
K.
,
Sasaki
,
Y.
, and
Tsubakino
,
D.
,
2021
, “
Determinant-Based Fast Greedy Sensor Selection Algorithm
,”
IEEE Access
,
9
, pp.
68535
68551
.10.1109/ACCESS.2021.3076186
23.
Inoba
,
R.
,
Uchida
,
K.
,
Iwasaki
,
Y.
,
Yamada
,
K.
,
Jebli
,
A.
,
Nagata
,
T.
,
Ozawa
,
Y.
, and
Nonomura
,
T.
,
2024
, “
Improved Estimation of Yaw Angle and Surface Pressure Distribution of Ahmed Model With Optimized Sparse Sensors by Bayesian Framework Based on Pressure-Sensitive Paint Data
,”
Exp. Therm. Fluid Sci.
,
156
, p.
111210
.10.1016/j.expthermflusci.2024.111210
24.
Kambayashi
,
I.
,
Dou
,
C.
, and
Kang
,
D.
,
2024
, “
Experimental and Numerical Evaluations of Dynamic Transfer Matrix for a Three-Dimensional Centrifugal Impeller Based on Unsteady Energy Conservation
,”
ASME J. Fluids Eng.
,
146
(
9
), p.
091202
.10.1115/1.4064996
You do not currently have access to this content.