Abstract

The Fontan procedure, essential for newborns with single-ventricle malformations, establishes a total cavopulmonary connection (TCPC). Understanding TCPC hemodynamics is critical for evaluating surgical outcomes. However, the intricate flow collisions within TCPC present a significant challenge. While computational fluid dynamics (CFD) offers insight into these mechanics, its computational inefficiency limits clinical application. Machine learning (ML) shows promise in overcoming this limitation. This study develops an ML framework to analyze TCPC hemodynamics. The ML models are trained to predict the relationship between TCPC flow parameters and two hemodynamic metrics: power loss (PL) and hepatic flow distribution (HFD). Four ML algorithms—random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), and artificial neural networks (ANNs)—are evaluated for their performance using a training dataset of 7056 CFD simulations. All ML models demonstrate strong correlations with CFD results (R2 = 0.95). Notably, the ANN model slightly outperforms others in predicting HFD (R2 = 0.98), while both ANN and XGBoost models achieve similar accuracy in predicting PL (R2 = 0.99). Additionally, the study investigates the feasibility of training an ANN model with a reduced dataset of 968 samples, which can still successfully capture the relationship between flow parameters and TCPC hemodynamics. This study underscores the potential of ML-enabled models to enhance the efficiency of hemodynamic assessments in TCPC with flow collision scenarios. Given that flow collision phenomena are common in various physiological systems and engineering contexts, these findings may drive advancements in ML-augmented flow modeling across a broad range of applications.

References

1.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
,
Ferranti
,
S. D. D.
, et al.,
2017
, “
Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.10.1161/CIR.0000000000000485
2.
Haggerty
,
C. M.
,
Restrepo
,
M.
,
Tang
,
E.
,
de Zelicourt
,
D. A.
,
Sundareswaran
,
K. S.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Whitehead
,
K. K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis
,”
J. Thorac. Cardiovasc. Surg.
,
148
(
4
), pp.
1481
1489
.10.1016/j.jtcvs.2013.11.060
3.
Deal
,
B. J.
, and
Jacobs
,
M. L.
,
2012
, “
Management of the Failing Fontan Circulation
,”
Heart
,
98
(
14
), pp.
1098
1104
.10.1136/heartjnl-2011-301133
4.
Goldberg
,
D. J.
,
Shaddy
,
R. E.
,
Ravishankar
,
C.
, and
Rychik
,
J.
,
2011
, “
The Failing Fontan: Etiology, Diagnosis and Management
,”
Expert Rev. Cardiovasc. Ther.
,
9
(
6
), pp.
785
793
.10.1586/erc.11.75
5.
Hagler
,
D. J.
,
Miranda
,
W. R.
,
Haggerty
,
B. J.
,
Anderson
,
J. H.
,
Johnson
,
J. N.
,
Cetta
,
F.
,
Said
,
S. M.
, and
Taggart
,
N. W.
,
2019
, “
Fate of the Fontan Connection: Mechanisms of Stenosis and Management
,”
Congenital Heart Dis.
,
14
(
4
), pp.
571
581
.10.1111/chd.12757
6.
Rychik
,
J.
,
Atz
,
A. M.
,
Celermajer
,
D. S.
,
Deal
,
B. J.
,
Gatzoulis
,
M. A.
,
Gewillig
,
M. H.
,
Hsia
,
T.-Y.
, et al.,
2019
, “
Evaluation and Management of the Child and Adult With Fontan Circulation: A Scientific Statement From the American Heart Association
,”
Circulation
,
140
(
6
), pp.
e234
e284
.10.1161/CIR.0000000000000696
7.
Baskett
,
R. J.
,
Ross
,
D. B.
,
Warren
,
A. E.
,
Sharratt
,
G. P.
, and
Murphy
,
D. A.
,
1999
, “
Hepatic Vein to the Azygous Vein Anastomosis for Pulmonary Arteriovenous Fistulae
,”
Ann. Thorac. Surg.
,
68
(
1
), pp.
232
233
.10.1016/S0003-4975(99)00494-4
8.
Bernstein
,
H. S.
,
Brook
,
M. M.
,
Silverman
,
N. H.
, and
Bristow
,
J.
,
1995
, “
Development of Pulmonary Arteriovenous Fistulae in Children After Cavopulmonary Shunt
,”
Circulation
,
92
(
9
), pp.
309
314
.10.1161/01.CIR.92.9.309
9.
Duncan
,
B. W.
, and
Desai
,
S.
,
2003
, “
Pulmonary Arteriovenous Malformations After Cavopulmonary Anastomosis
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1759
1766
.10.1016/S0003-4975(03)00450-8
10.
Knight
,
W. B.
, and
Mee
,
R. B.
,
1995
, “
A Cure for Pulmonary Arteriovenous Fistulas?
,”
Ann. Thorac. Surg.
,
59
(
4
), pp.
999
1001
.10.1016/0003-4975(94)00735-P
11.
Pike
,
N. A.
,
Vricella
,
L. A.
,
Feinstein
,
J. A.
,
Black
,
M. D.
, and
Reitz
,
B. A.
,
2004
, “
Regression of Severe Pulmonary Arteriovenous Malformations After Fontan Revision and ‘Hepatic Factor’ Rerouting
,”
Ann. Thorac. Surg.
,
78
(
2
), pp.
697
699
.10.1016/j.athoracsur.2004.02.003
12.
Trusty
,
P. M.
,
Wei
,
Z.
,
Rychik
,
J.
,
Russo
,
P. A.
,
Surrey
,
L. F.
,
Goldberg
,
D. J.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2018
, “
Impact of Hemodynamics and Fluid Energetics on Liver Fibrosis After Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
156
(
1
), pp.
267
275
.10.1016/j.jtcvs.2018.02.078
13.
Khiabani
,
R. H.
,
Whitehead
,
K. K.
,
Han
,
D.
,
Restrepo
,
M.
,
Tang
,
E.
,
Bethel
,
J.
,
Paridon
,
S. M.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2015
, “
Exercise Capacity in Single-Ventricle Patients After Fontan Correlates With Haemodynamic Energy Loss in TCPC
,”
Heart
,
101
(
2
), pp.
139
143
.10.1136/heartjnl-2014-306337
14.
Tang
,
E.
,
Wei
,
Z. A.
,
Whitehead
,
K. K.
,
Khiabani
,
R. H.
,
Restrepo
,
M.
,
Mirabella
,
L.
,
Bethel
,
J.
, et al.,
2017
, “
Effect of Fontan Geometry on Exercise Haemodynamics and Its Potential Implications
,”
Heart
,
103
(
22
), pp.
1806
1812
.10.1136/heartjnl-2016-310855
15.
Rijnberg
,
F. M.
,
van ‘t Hul
,
L. C.
,
Hazekamp
,
M. G.
,
van den Boogaard
,
P. J.
,
Juffermans
,
J. F.
,
Lamb
,
H. J.
,
Terol Espinosa de Los Monteros
,
C.
, et al.,
2022
, “
Haemodynamic Performance of 16-20-mm Extracardiac Goretex Conduits in Adolescent Fontan Patients at Rest and During Simulated Exercise
,”
Eur. J. Cardiothorac. Surg.
,
63
(
1
), p.
ezac522
.10.1093/ejcts/ezac522
16.
Mercer-Rosa
,
L.
,
Fogel
,
M. A.
,
Wei
,
Z. A.
,
Trusty
,
P. M.
,
Tree
,
M.
,
Tang
,
E.
,
Restrepo
,
M.
, et al.,
2022
, “
Fontan Geometry and Hemodynamics Are Associated With Quality of Life in Adolescents and Young Adults
,”
Ann. Thorac. Surg.
,
114
(
3
), pp.
841
847
.10.1016/j.athoracsur.2022.01.017
17.
de Zelicourt
,
D. A.
, and
Kurtcuoglu
,
V.
,
2016
, “
Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
174
186
.10.1007/s10439-015-1381-9
18.
Marsden
,
A. L.
, and
Feinstein
,
J. A.
,
2015
, “
Computational Modeling and Engineering in Pediatric and Congenital Heart Disease
,”
Curr. Opin. Pediatr.
,
27
(
5
), pp.
587
596
.10.1097/MOP.0000000000000269
19.
Trusty
,
P. M.
,
Wei
,
Z. A.
,
Rychik
,
J.
,
Graham
,
A.
,
Russo
,
P. A.
,
Surrey
,
L. F.
,
Goldberg
,
D. J.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
,
2020
, “
Cardiac Magnetic Resonance-Derived Metrics Are Predictive of Liver Fibrosis in Fontan Patients
,”
Ann. Thorac. Surg.
,
109
(
6
), pp.
1904
1911
.10.1016/j.athoracsur.2019.09.070
20.
Fogel
,
M. A.
,
Khiabani
,
R. H.
, and
Yoganathan
,
A.
,
2013
, “
Imaging for Preintervention Planning: Pre- and Post-Fontan Procedures
,”
Circ. Cardiovasc. Imaging
,
6
(
6
), pp.
1092
1101
.10.1161/CIRCIMAGING.113.000335
21.
Trusty
,
P. M.
,
Slesnick
,
T. C.
,
Wei
,
Z. A.
,
Rossignac
,
J.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2018
, “
Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions
,”
J. Cardiovasc. Transl. Res.
,
11
(
2
), pp.
133
144
.10.1007/s12265-018-9786-0
22.
Wei
,
Z. A.
, and
Fogel
,
M. A.
,
2021
, “
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand With a Look Towards Clinical Application
,”
Cardiovasc. Eng. Technol.
,
12
(
6
), pp.
618
630
.10.1007/s13239-021-00541-y
23.
Restrepo
,
M.
,
Luffel
,
M.
,
Sebring
,
J.
,
Kanter
,
K.
,
Del Nido
,
P.
,
Veneziani
,
A.
,
Rossignac
,
J.
, and
Yoganathan
,
A.
,
2015
, “
Surgical Planning of the Total Cavopulmonary Connection: Robustness Analysis
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1321
1334
.10.1007/s10439-014-1149-7
24.
Haggerty
,
C. M.
,
de Zelicourt
,
D. A.
,
Restrepo
,
M.
,
Rossignac
,
J.
,
Spray
,
T. L.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2012
, “
Comparing Pre- and Post-Operative Fontan Hemodynamic Simulations: Implications for the Reliability of Surgical Planning
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2639
2651
.10.1007/s10439-012-0614-4
25.
Liu
,
X.
,
Aslan
,
S.
,
Hess
,
R.
,
Mass
,
P.
,
Olivieri
,
L.
,
Loke
,
Y. H.
,
Hibino
,
N.
,
Fuge
,
M.
, and
Krieger
,
A.
,
2020
, “
Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC)
, Montreal, QC, Canada, July 20–24, pp.
2319
2323
.10.1109/EMBC44109.2020.9176371
26.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
27.
Wu
,
J.-L.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2018
, “
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
,”
Phys. Rev. Fluids
,
3
(
7
), p.
074602
.10.1103/PhysRevFluids.3.074602
28.
Itu
,
L.
,
Rapaka
,
S.
,
Passerini
,
T.
,
Georgescu
,
B.
,
Schwemmer
,
C.
,
Schoebinger
,
M.
,
Flohr
,
T.
,
Sharma
,
P.
, and
Comaniciu
,
D.
,
2016
, “
A Machine-Learning Approach for Computation of Fractional Flow Reserve From Coronary Computed Tomography
,”
J. Appl. Physiol. (1985)
,
121
(
1
), pp.
42
52
.10.1152/japplphysiol.00752.2015
29.
Ryu
,
K.
,
Healy
,
T. M.
,
Ensley
,
A. E.
,
Sharma
,
S.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and in Vitro Experiments
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
844
853
.10.1114/1.1408930
30.
Tang
,
E.
,
Restrepo
,
M.
,
Haggerty
,
C. M.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Whitehead
,
K. K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Geometric Characterization of Patient-Specific Total Cavopulmonary Connections and Its Relationship to Hemodynamics
,”
JACC: Cardiovasc. Imaging
,
7
(
3
), pp.
215
224
.10.1016/j.jcmg.2013.12.010
31.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Hoydu
,
A.
,
Hubbard
,
A.
,
Rychik
,
J.
,
Jacobs
,
M.
,
Fellows
,
K. E.
, and
Haselgrove
,
J.
,
1997
, “
The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
114
(
6
), pp.
1032
1041
.10.1016/S0022-5223(97)70017-5
32.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: An in Vitro Study
,”
Ann. Thorac. Surg.
,
68
(
4
), pp.
1384
1390
.10.1016/S0003-4975(99)00560-3
33.
Throckmorton
,
A. L.
,
Carr
,
J. P.
,
Tahir
,
S. A.
,
Tate
,
R.
,
Downs
,
E. A.
,
Bhavsar
,
S. S.
,
Wu
,
Y.
,
Grizzard
,
J. D.
, and
Moskowitz
,
W. B.
,
2011
, “
Mechanical Cavopulmonary Assistance of a Patient-Specific Fontan Physiology: Numerical Simulations, Lumped Parameter Modeling, and Suction Experiments
,”
Artif. Organs
,
35
(
11
), pp.
1036
1047
.10.1111/j.1525-1594.2011.01339.x
34.
Wei
,
Z. A.
,
Trusty
,
P. M.
,
Tree
,
M.
,
Haggerty
,
C. M.
,
Tang
,
E.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2017
, “
Can Time-Averaged Flow Boundary Conditions Be Used to Meet the Clinical Timeline for Fontan Surgical Planning?
,”
J. Biomech.
,
50
, pp.
172
179
.10.1016/j.jbiomech.2016.11.025
35.
Wei
,
Z. A.
,
Huddleston
,
C.
,
Trusty
,
P. M.
,
Singh-Gryzbon
,
S.
,
Fogel
,
M. A.
,
Veneziani
,
A.
, and
Yoganathan
,
A. P.
,
2019
, “
Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics
,”
Ann. Biomed. Eng.
,
47
(
11
), pp.
2258
2270
.10.1007/s10439-019-02307-z
36.
Wei
,
Z. A.
,
Tree
,
M.
,
Trusty
,
P. M.
,
Wu
,
W.
,
Singh-Gryzbon
,
S.
, and
Yoganathan
,
A.
,
2018
, “
The Advantages of Viscous Dissipation Rate Over Simplified Power Loss as a Fontan Hemodynamic Metric
,”
Ann. Biomed. Eng.
,
46
(
3
), pp.
404
416
.10.1007/s10439-017-1950-1
37.
Wei
,
Z. A.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2022
, “
Invited Commentary to ‘Hemodynamic Performance of 16-20 mm Extracardiac Goretex Conduits in Adolescent Fontan Patients at Rest and During Simulated Exercise’
,”
Eur. J. Cardiothorac. Surg.
,
63
(
1
), p.
ezad015
.10.1093/ejcts/ezad015
38.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
.10.1126/science.aaa8415
39.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
40.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Francisco, CA, Aug. 13–17, pp.
785
794
.10.1145/2939672.2939785
41.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.10.1007/BF00994018
42.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.10.1109/2.485891
43.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint arXiv:1412.6980.
44.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
, and
Antiga
,
L.
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems, 32
, Curran Associates Inc., New York.
45.
Okafor
,
I.
,
Raghav
,
V.
,
Condado
,
J. F.
,
Midha
,
P. A.
,
Kumar
,
G.
, and
Yoganathan
,
A. P.
,
2017
, “
Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
45
(
5
), pp.
1305
1314
.10.1007/s10439-017-1790-z
46.
Neidlin
,
M.
,
Liao
,
S.
,
Li
,
Z.
,
Simpson
,
B.
,
Kaye
,
D. M.
,
Steinseifer
,
U.
, and
Gregory
,
S.
,
2021
, “
Understanding the Influence of Left Ventricular Assist Device Inflow Cannula Alignment and the Risk of Intraventricular Thrombosis
,”
Biomed. Eng. Online
,
20
(
1
), p.
47
.10.1186/s12938-021-00884-6
47.
Klotz
,
S.
,
Meyer-Saraei
,
R.
,
Frydrychowicz
,
A.
,
Scharfschwerdt
,
M.
,
Putman
,
L. M.
,
Halder
,
S.
, and
Sievers
,
H. H.
,
2016
, “
Proposing a Novel Technique to Exclude the Left Ventricle With an Assist Device: Insights From 4-Dimensional Flow Magnetic Resonance Imaging
,”
Eur. J. Cardiothorac. Surg.
,
50
(
3
), pp.
439
445
.10.1093/ejcts/ezw092
48.
Zélicourt
,
D. D.
,
Ge
,
L.
,
Wang
,
C.
,
Sotiropoulos
,
F.
,
Gilmanov
,
A.
, and
Yoganathan
,
A.
,
2009
, “
Flow Simulations in Arbitrarily Complex Cardiovascular Anatomies—An Unstructured Cartesian Grid Approach
,”
Comput. Fluids
,
38
(
9
), pp.
1749
1762
.10.1016/j.compfluid.2009.03.005
49.
de Zelicourt
,
D. A.
,
Pekkan
,
K.
,
Parks
,
J.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2006
, “
Flow Study of an Extracardiac Connection With Persistent Left Superior Vena Cava
,”
J. Thorac. Cardiovasc. Surg.
,
131
(
4
), pp.
785
791
.10.1016/j.jtcvs.2005.11.031
50.
Khiabani
,
R. H.
,
Restrepo
,
M.
,
Tang
,
E.
,
De Zelicourt
,
D.
,
Sotiropoulos
,
F.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2012
, “
Effect of Flow Pulsatility on Modeling the Hemodynamics in the Total Cavopulmonary Connection
,”
J. Biomech.
,
45
(
14
), pp.
2376
2381
.10.1016/j.jbiomech.2012.07.010
51.
Trusty
,
P. M.
,
Wei
,
Z. A.
,
Slesnick
,
T. C.
,
Kanter
,
K. R.
,
Spray
,
T. L.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2019
, “
The First Cohort of Prospective Fontan Surgical Planning Patients With Follow-Up Data: How Accurate Is Surgical Planning?
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
3
), pp.
1146
1155
.10.1016/j.jtcvs.2018.11.102
52.
Wei
,
Z. A.
,
Si
,
B.
,
Ge
,
X.
,
Zhu
,
M.
,
Cetatoiu
,
M. A.
,
Tian
,
C.
,
Sun
,
L.
, and
Qiao
,
B.
,
2021
, “
Is Doppler Echocardiography Adequate for Surgical Planning of Single Ventricle Patients?
,”
Cardiovasc. Eng. Technol.
,
12
(
6
), pp.
606
617
.10.1007/s13239-021-00533-y
53.
Garven
,
E.
, and
Throckmorton
,
A.
,
2020
, “
Invited Commentary: Personalized Surgical Planning by Computational and Visual Methods in 21st-Century Medical Engineering
,”
J. Card. Surg.
,
35
(
3
), pp.
526
527
.10.1111/jocs.14432
54.
van Bakel
,
T. M. J.
,
Lau
,
K. D.
,
Hirsch-Romano
,
J.
,
Trimarchi
,
S.
,
Dorfman
,
A. L.
, and
Figueroa
,
C. A.
,
2018
, “
Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction
,”
J. Cardiovasc. Transl. Res.
,
11
(
2
), pp.
145
155
.10.1007/s12265-017-9781-x
55.
Wei
,
Z.
,
Singh-Gryzbon
,
S.
,
Trusty
,
P. M.
,
Huddleston
,
C.
,
Zhang
,
Y.
,
Fogel
,
M. A.
,
Veneziani
,
A.
, and
Yoganathan
,
A. P.
,
2020
, “
Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics
,”
Ann. Biomed. Eng.
,
48
(
8
), pp.
2204
2217
.10.1007/s10439-020-02527-8
56.
Cheng
,
A. L.
,
Pahlevan
,
N. M.
,
Rinderknecht
,
D. G.
,
Wood
,
J. C.
, and
Gharib
,
M.
,
2018
, “
Experimental Investigation of the Effect of Non-Newtonian Behavior of Blood Flow in the Fontan Circulation
,”
Eur. J. Mech. - B/Fluids
,
68
, pp.
184
192
.10.1016/j.euromechflu.2017.12.009
You do not currently have access to this content.