Abstract

Small axial fans, commonly employed for cooling electronic equipment, are frequently housed within narrow ducts, where intense tonal sound with duct resonance can occur, particularly when the blade passing frequency or its harmonic frequency aligns with the duct's resonance frequency. To mitigate resonant sound, this study proposes a flow control using dielectric barrier discharge plasma actuators, which induce a flow along the generation of plasma in air. The control effects on flow field, acoustic radiation, and aerodynamic characteristics are evaluated through direct aeroacoustic simulations and experiments conducted at different flow rates. The computational results reveal that swirling flow occurs in the inflow due to fan rotations at low flow coefficients. This swirling flow is weakened by utilizing plasma actuators, which are arranged to induce flows in the circumferentially reverse direction compared to fan rotations. This control method weakens the resonant sound at low and intermediate flow coefficients, while intensifying it at high flow coefficients, all at the same rotational speed. Moreover, the static pressure coefficient decreases and increases at low and high flow coefficients, respectively, with the latter attributed to an increase in the relative inflow angle induced by the control. Experimental findings demonstrate that the acoustic resonance was reduced by the control at both low and high flow rates, achieved by adjusting the rotational speed to maintain the same flowrate and static pressure rise as in the baseline case.

References

1.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.10.4271/620532
2.
Mugridge
,
B. D.
, and
Morfey
,
C. L.
,
1972
, “
Sources of Noise in Axial Flow Fans
,”
J. Acoust. Soc. Am.
,
51
(
5A
), pp.
1411
1426
.10.1121/1.1912992
3.
Louw
,
F. G.
,
2015
, “
Investigation of the Flow Field in the Vicinity of an Axial Flow Fan During Low Flow Rates
,” Ph.D. thesis,
Stellenbosch University
, Stellenbosch.
4.
Longhouse
,
R. E.
,
1978
, “
Control of Tip-Vortex Noise of Axial Flow Fans by Rotating Shrouds
,”
J. Sound Vib.
,
58
(
2
), pp.
201
214
.10.1016/S0022-460X(78)80075-3
5.
Lin
,
S. C.
, and
Chou
,
C. A.
,
2004
, “
Blockage Effect of Axial-Flow Fans Applied on Heat Sink Assembly
,”
Appl. Therm. Eng.
,
24
(
16
), pp.
2375
2389
.10.1016/j.applthermaleng.2004.03.009
6.
Yokoyama
,
H.
,
2023
, “
Fluid-Acoustic Interactions with Resonance Around an Axial Fan in a Duct
,”
Proceedings of Flinovia IV
, Sydney, Australia, May 22–24, pp.1–15.
7.
Naitong
,
L.
,
Changyoung
,
J.
,
Lixi
,
H.
, and
Chen
,
W.
,
2021
, “
Effect of Porous Casing on Small Axial-Flow Fan Noise
,”
Appl. Acoust.
,
175
, p.
107808
.10.1016/j.apacoust.2020.107808
8.
Tingsheng
,
Z.
,
Cheng
,
Y.
, and
Åbom
,
M.
,
2023
, “
Tonal Noise Reduction of an Electric Ducted Fan Using Over-the-Rotor Acoustic Treatment
,”
Appl. Acoust.
,
205
, p.
109298
.10.1016/j.apacoust.2023.109298
9.
Itagaki
,
R.
,
Minowa
,
K.
, and
Yokoyama
,
H.
,
2018
, “
Effects of Slits of Casing on Aeroacoustic Noise Radiated From an Axial Fan
,”
Proceedings of ICSV 25
, Hiroshima, Japan, July 8–12, pp.
1383
1390
.
10.
Yokoyama
,
H.
,
Minowa
,
K.
,
Orito
,
K.
,
Nishikawara
,
M.
, and
Yanada
,
H.
,
2020
, “
Compressible Simulation of Flow and Sound Around a Small Axial-Flow Fan with Flow Through Casing Slits
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101215
.10.1115/1.4047807
11.
Neuhaus
,
L.
, and
Neise
,
W.
,
2005
, “
Active Control to Improve the Aerodynamic Performance and Re-Duce Tip Clearance Noise of Axial Turbomachines
,”
AIAA
Paper No. 2005-3073.10.2514/6.2005-3073
12.
Jukes
,
T. N.
, and
Choi
,
K.
,
2009
, “
Flow Control Around a Circular Cylinder Using Pulsed Dielectric Barrier Discharge Surface Plasma
,”
Phys. Fluids
,
21
(
8
), p.
084103
.10.1063/1.3194307
13.
Greenblatt
,
D.
,
Pfeffermann
,
O.
,
Keisar
,
D.
, and
Göksel
,
B.
,
2021
, “
Wells Turbine Stall Control Using Plasma Actuators
,”
AIAA J.
,
59
(
3
), pp.
765
772
.10.2514/1.J060278
14.
Saddoughi
,
S.
,
Bennett
,
G.
,
Boespflug
,
M.
,
Puterbaugh
,
S. L.
, and
Wadia
,
A. R.
,
2015
, “
Experimental Investigation of Tip Clearance Flow in a Transonic Compressor With and Without Plasma Actuators
,”
ASME J. Turbo., Trans.
,
137
(
4
), p. 041008.10.1115/1.4028444
15.
Yokoyama
,
H.
,
Otsuka
,
K.
,
Otake
,
K.
,
Nishikawara
,
M.
, and
Yanada
,
H.
,
2020
, “
Control of Cavity Flow with Acoustic Radiation by an Intermittently Driven Plasma Actuator
,”
Phys. Fluids
,
32
(
10
), p.
106104
.10.1063/5.0017658
16.
Inasawa
,
H.
,
Ninomiya
,
C.
, and
Asai
,
M.
,
2013
, “
Suppression of Tonal Trailing-Edge Noise From an Air-Foil Using a Plasma Actuator
,”
AIAA J.
,
51
(
7
), pp.
1695
1702
.10.2514/1.J052203
17.
Yokoyama
,
H.
,
Yoza
,
K.
,
Nishikawara
,
M.
, and
Yanada
,
H.
,
2023
, “
Simulation of Acoustic Oscillatory Flows Around a Curvature Controlled by a Plasma Actuator
,”
Appl. Acoust.
,
205
, p.
109274
.10.1016/j.apacoust.2023.109274
18.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
19.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
20.
Liu
,
Q.
, and
Vasilyev
,
O. V.
,
2007
, “
A Brinkman Penalization Method for Compressible Flows in Complex Geometries
,”
J. Comput. Phys.
,
227
(
2
), pp.
946
966
.10.1016/j.jcp.2007.07.037
21.
Yokoyama
,
H.
,
Miki
,
A.
,
Onitsuka
,
H.
, and
Iida
,
A.
,
2015
, “
Direct Numerical Simulation of Fluid-Acoustic Interactions in a Recorder With Tone Holes
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
858
873
.10.1121/1.4926902
22.
Tanaka
,
Y.
,
Yokoyama
,
H.
, and
Iida
,
A.
,
2018
, “
Forced-Oscillation Control of Sound Radiated From the Flow Around a Cascade of Flat Plates
,”
J. Sound Vib.
,
431
, pp.
248
264
.10.1016/j.jsv.2018.06.013
23.
Gaitonde
,
D. V.
, and
Visbal
,
M. R.
,
2000
, “
Pade-Type Higher-Order Boundary Filters for the Navier-Stokes Equations
,”
AIAA J.
,
38
(
11
), pp.
2103
2112
.10.2514/2.872
24.
Matsuura
,
K.
, and
Kato
,
C.
,
2007
, “
Large-Eddy Simulation of Compressible Transitional Flows in a Low-Pressure Turbine Cascade
,”
AIAA J.
,
45
(
2
), pp.
442
457
.10.2514/1.22425
25.
Fukuma
,
A.
,
Kawai
,
M.
,
Furukawa
,
N.
,
Kawasaki
,
K.
,
Yamagiwa
,
I.
,
Nishikawara
,
M.
, and
Yokoyama
,
H.
,
2024
, “
Fluid-Acoustic Interactions Around an Expanding Pipe with Orifice Plates
,”
Phys. Fluids
,
36
(
3
), p.
036116
.10.1063/5.0193029
26.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
27.
Kim
,
J. W.
, and
Lee
,
D. J.
,
2000
, “
Generalized Characteristic Boundary Conditions for Computational Aeroacoustics
,”
AIAA J.
,
38
(
11
), pp.
2040
2049
.10.2514/2.891
28.
Timothy
,
N. J.
,
Segawa
,
T.
, and
Furutani
,
H.
,
2013
, “
Flow Control on a NACA 4418 Using Dielectric-Barrier-Discharge Vortex Generators
,”
AIAA J
,
51
(
2
), pp.
452
464
.10.2514/1.J051852
29.
Minowa
,
K.
,
Yokoyama
,
H.
,
Orito
,
K.
, and
Iida
,
A.
,
2019
, “
Direct Aeroacoustic Simulation of Flow and Noise Around an Axial-Flow Fan Regarding Effects of Slits in a Casing
,”
Proceedings of 26th International Congress on Sound and Vibration
, Montreal, Canada, July 7–11, p.
346
.
You do not currently have access to this content.