Abstract

An open valveless micropump pumped by a disk-shaped piezo-electric actuator was developed, and its working principles were investigated. The electrode of the pump buzzer was divided into two semicircles as piezo-electric actuators, and single-phase or dual-phase AC driving potential was applied. The flowrate of the pump was analyzed when actuated in basic symmetric (W00) and antisymmetric (W01) modes. The finite element package software ANSYS was used to analyze the resonant frequency and mode of the buzzer under fluid loading, and the vibration displacement generated by the single-phase and dual-phase time-harmonic actuation was both simulated by using an additional mass method and experimentally investigated. The experimental results show that the resonant frequency of the disk-shaped actuator decreased due to the fluid loading effect and as the gap distance between the conduit and the actuator decreased. The maximum flow rates of the W00 and W01 mode actuated pumps were 133.13 and 9.63 mL/min, respectively. The driving frequency with the highest pump efficiency was slightly lower than the resonance frequency of the fluid-loaded buzzer. Applying a hydrophobic treatment to the back of the buzzer decreased the resonance frequency under fluid loading. The results show that simulating the structural resonance frequency for various fluid loads by the additional mass method is feasible. The flow direction could be controlled by activating the W01 mode.

References

1.
Petersen
,
K. E.
,
1979
, “
Fabrication of an Integrated Planar Silicon Ink-Jet Structure
,”
IEEE Trans. Electron Devices
,
26
(
12
), pp.
1918
1920
.10.1109/T-ED.1979.19796
2.
Smits
,
J. G.
,
1990
, “
Piezoelectric Micropump With Three Valves Working Peristaltically
,”
Sens. Actuators A
,
21
(
1–3
), pp.
203
206
.10.1016/0924-4247(90)85039-7
3.
Stemme
,
E.
, and
Stemme
,
G.
,
1993
, “
A Valveless Diffuser Nozzle Based Fluid Pump
,”
Sens. Actuators A
,
39
(
2
), pp.
159
167
.10.1016/0924-4247(93)80213-Z
4.
Olsson
,
A.
,
Stemme
,
E.
, and
Stemme
,
G.
,
1995
, “
A Valveless Planar Fluid Pump With Two Pump Chambers
,”
Sens. Actuators A
,
47
(
1–3
), pp.
549
556
.10.1016/0924-4247(94)00960-P
5.
Olsson
,
A.
,
Stemme
,
E.
, and
Stemme
,
G.
,
1996
, “
Numerical and Experimental Studies of Flat-Walled Diffuser Elements for Valve-Less Micropump
,”
Sens. Actuators A
,
84
(
1–2
), pp.
165
175
.10.1016/S0924-4247(99)00320-9
6.
Ullmann
,
A.
,
1998
, “
The Piezoelectric Valveless Pump Performance Enhancement Analysis
,”
Sens. Actuators A
,
69
(
1
), pp.
97
105
.10.1016/S0924-4247(98)00058-2
7.
Jiang
,
X. N.
,
Zhou
,
Z. Y.
,
Huang
,
X. Y.
,
Li
,
Y.
,
Yang
,
Y.
, and
Liu
,
C. Y.
,
1998
, “
Micronozzle/Diffuser Flow and Its Application in Micro Valveless Pumps
,”
Sens. Actuators A
,
70
(
1–2
), pp.
81
87
.10.1016/S0924-4247(98)00115-0
8.
Mu
,
Y. H.
,
Hung
,
N. P.
, and
Ngoi
,
K. A.
,
1999
, “
Optimisation Design of a Piezoelectric Micropump
,”
Int. J. Adv. Manuf. Technol.
,
15
(
8
), pp.
573
576
.10.1007/s001700050104
9.
Matsumoto
,
S.
,
Maeda
,
R.
, and
Klein
,
A.
,
1999
, “
Characterization of a Valveless Micropump Based on Liquid Viscosity
,”
Microscale Thermophys. Eng.
, 3(1), pp.
31
42
.10.1080/108939599199855
10.
Nguyen
,
N.-T.
, and
Huang
,
X.
,
2001
, “
Miniature Valveless Pumps Based on Printed Circuit Board Technique
,”
Sens. Actuators A
,
88
(
2
), pp.
104
111
.10.1016/S0924-4247(00)00500-8
11.
Gerlach
,
T.
, and
Wurmus
,
H.
,
1995
, “
Working Principle and Performance of the Dynamic Micropump
,”
Sens. Actuators A
,
50
(
1–2
), pp.
135
140
.10.1016/0924-4247(96)80097-5
12.
Gerlach
,
T.
,
Schuenemann
,
M.
, and
Wurmus
,
H.
,
1995
, “
A New Micropump Principle of the Reciprocating Type Using Pyramidic Micro Flowchannels as Passive Valves
,”
J. Micromech. Microeng.
,
5
(
2
), pp.
199
201
.10.1088/0960-1317/5/2/039
13.
Li
,
S.
, and
Chen
,
S.
,
2003
, “
Analytical Analysis of a Circular PZT Actuator for Valveless Micropumps
,”
Sens. Actuators A
,
104
(
2
), pp.
151
161
.10.1016/S0924-4247(03)00006-2
14.
Fan
,
B.
,
Song
,
G.
, and
Hussain
,
F.
,
2005
, “
Simulation of a Piezoelectrically Actuated Valveless Micropump
,”
Smart Mater. Struct.
,
14
(
2
), pp.
400
405
.10.1088/0964-1726/14/2/014
15.
Hasegawa
,
T.
,
Ueha
,
S.
, and
Nakamura
,
K.
,
2005
, “
A Miniature Ultrasonic Pump Using a Bending Disk Transducer and a Gap
,”
Presented in World Congress on Ulrasonics-Ultrasonics International 2005
, Beijing, China, Aug. 29–Sept. 1, pp. 575–579. (in Japanese)
16.
Zhang
,
T.
, and
Wang
,
Q. M.
,
2006
, “
Performance Evaluation of Valveless Micropump Driven by a Ring-Type Piezoelectric Actuator
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
(
2
), pp.
463
473
.10.1109/TUFFC.2006.1593386
17.
Cheng
,
Y.-L.
, and
Lin
,
J.-H.
,
2007
, “
Manufacture of Three-Dimensional Valveless Micropump
,”
J. Mater. Process. Technol.
,
192–193
, pp.
229
236
.10.1016/j.jmatprotec.2007.04.055
18.
Yang
,
H.
,
Tasi
,
T.-H.
, and
Hu
,
C.-C.
,
2008
, “
Portable Valveless Peristaltic Micropump Design and Fabrication
,” Proceeding on Design, Test, Integration and Packaging of MEMS & MOEMS (
DTIP2008
), Nice, France, Apr. 9–11, pp.
273
278
.10.1109/DTIP.2008.4752999
19.
Tsui
,
Y.-Y.
, and
Lu
,
S.-L.
,
2008
, “
Evaluation of the Performance of a Valveless Micropump by CFD and Lumped-System Analyses
,”
Sens. Actuators A
,
148
(
1
), pp.
138
148
.10.1016/j.sna.2008.06.036
20.
Kang
,
J.
,
Scholz
,
T.
,
Weaver
,
J. D.
,
Ku
,
D. N.
, and
Rosen
,
D. W.
,
2011
, “
Pump Design for a Portable Renal Replacement System
,”
ASME J. Med. Devices
,
5
(
3
), p.
031008
.10.1115/1.4004650
21.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
Electrohydrodynamic Conduction Driven Single- and Two-Phase Flow in Microchannels With Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
10
), p.
101701
.10.1115/1.4007617
22.
Yang
,
S.
,
He
,
X.
,
Yuan
,
S.
,
Zhu
,
J.
, and
Deng
,
Z.
,
2015
, “
A Valveless Piezoelectric Micropump With a Coanda Jet Element
,”
Sens. Actuators A
,
230
, pp.
74
82
.10.1016/j.sna.2015.04.016
23.
Ullmann
,
A.
, and
Taitel
,
Y.
,
2015
, “
The Piezoelectric Valve-Less Pump: Series and Parallel Connections
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021104
.10.1115/1.4028534
24.
Chandrasekaran
,
A.
, and
Packirisamy
,
M.
,
2016
, “
Improved Efficiency of Microdiffuser Through Geometry Tuning for Valveless Micropumps
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031101
.10.1115/1.4031256
25.
Yu
,
T.-H.
,
2016
, “
Development of a Dual-Phase Miniature Valve-Less Piezoelectric Pump
,” Proceeding of 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (
ISAF/ECAPD/PFM2016
), Darmstadt, Germany, Aug. 21–25, pp.
1
4
.10.1109/ISAF.2016.7578064
26.
Kawun
,
P.
,
Leahy
,
S.
, and
Lai
,
Y.
,
2016
, “
A Thin PDMS Nozzle/Diffuser Micropump for Biomedical Applications
,”
Sens. Actuators A
,
249
, pp.
149
154
.10.1016/j.sna.2016.08.032
27.
He
,
X.
,
Xu
,
W.
,
Lin
,
N.
,
Uzoejinwa
,
B. B.
, and
Deng
,
Z.
,
2017
, “
Dynamics Modeling and Vibration Analysis of a Piezoelectric Diaphragm Applied in Valveless Micropump
,”
J. Sound Vib.
,
405
, pp.
133
143
.10.1016/j.jsv.2017.05.025
28.
Munas
,
F.
,
Melroy
,
G.
,
Abeynayake
,
C.
,
Chathuranga
,
H.
,
Amarasinghe
,
R.
,
Kumarage
,
P.
,
Dau
,
V.
, and
Dao
,
D.
,
2018
, “
Development of PZT Actuated Valveless Micropump
,”
MDPI J. Sens.
,
18
(
5
), p.
1302
.10.3390/s18051302
29.
Zhang
,
J.
,
Wang
,
Y.
, and
Huang
,
J.
,
2018
, “
Equivalent Circuit Modeling for a Valveless Piezoelectric Pump
,”
MDPI J. Sens.
,
18
(
9
), p.
2881
.10.3390/s18092881
30.
Ji
,
J.
,
Chen
,
S.
,
Xie
,
X.
,
Wang
,
X.
,
Kan
,
J.
,
Zhang
,
Z.
, and
Li
,
J.
,
2019
, “
Design and Experimental Verification on Characteristics of Valve-Less Piezoelectric Pump Effected by Valve Hole Spacing
,”
IEEE Access
,
7
, pp.
36259
36265
.10.1109/ACCESS.2019.2903680
31.
Huanga
,
J.
,
Zoua
,
L.
,
Lib
,
Z.
,
Xu
,
W.
,
Quan
,
Z.
, and
Yuan
,
W.
,
2020
, “
Performance Comparison of Valveless Piezoelectric Pumps With Asymmetrical Channels
,”
Sens. Actuators A
,
302
, p.
111785
.
32.
Huang
,
J.
,
Zou
,
L.
,
Li
,
Z.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Wang
,
Y.
,
2020
, “
Research on Double-Outlet Valveless Piezoelectric Pump With Fluid Guiding Body
,”
Sens. Actuators A
,
314
, p.
112241
.10.1016/j.sna.2020.112241
33.
Yan
,
Q.
,
Yin
,
Y.
,
Sun
,
W.
, and
Fu
,
J.
,
2021
, “
Advances in Valveless Piezoelectric Pumps
,”
MDPI J. Appl. Sci.
,
11
(
15
), p.
7061
.10.3390/app11157061
34.
Cesmeci
,
S.
,
Hassan
,
R.
, and
Thompson
,
M.
,
2022
, “
A Proof-of-Concept Study of a Magnetorheological Micropump
,”
ASME
Paper No. IMECE2022-96174.
35.
Parsi
,
B.
,
Abouzarkhanifard
,
A.
, and
Zhang
,
L.
,
2023
, “
Design and Optimization of Piezoelectric Actuators for Microflap-Embedded Micropumps
,”
Adv. Mech. Eng.
,
15
(
5
), p.
16878132231158983
.10.1177/16878132231158983
36.
ANSI/IEEE Standard
,
1987
,
Piezoelectricity
,
IEEE
,
New York
.10.1109/IEEESTD.1988.79638
37.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill Higher Education
,
New York
, pp.
114
117
.https://www.iust.ac.ir/files/fnst/ssadeghzadeh_52bb7/files/EB__Fundamental_of_Vibration.pdf
38.
Grimes
,
R. G.
,
Lewis
,
J. G.
, and
Simon
,
H. D.
,
1994
, “
A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems
,”
SIAM J. Matrix Anal. Appl.
,
15
(
1
), pp.
228
272
.10.1137/S0895479888151111
39.
ANSYS, Inc.
,
2007
,
Release 10.0 Documentation for ANSYS: Structural Analysis Guide, Transient Dynamic Analysis
,
SAS IP, Inc
., Cheyenne, WY.
40.
ANSYS, Inc.
,
2007
,
Release 10.0 Documentation for ANSYS: Contact Technology Guide, Surface-to-Surface Contact
,
SAS IP, Inc
., Canonsburg, PA.
41.
Muson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1998
,
Fundamentals of Fluid Mechanics
, 3rd ed.,
Wiley
,
Canada
.
You do not currently have access to this content.