Abstract

With tremendous potential to lower the carbon footprint of power generation and as an alternative energy carrier for many applications, hydrogen has emerged as a key potential energy carrier. Understanding of geological conditions and the injection and production changes over time for hydrogen storage are paramount, requiring in situ reservoir sensing options. Determining the flow behavior is of critical importance in order to estimate hydrogen volumes within the reservoir. A novel AI-driven methodology for hydrogen flow behavior and volume estimation was demonstrated. For determining the S1 through S3 predicted hydrogen storage quantities, the framework is linked to an uncertainty estimate framework. The Pohokura field in New Zealand served as the basis for the framework's evaluation, and it performed acceptably in terms of identifying the hydrogen flow behaviors and quantities inside the subsurface reservoir. The framework is a significant first step in assessing the amount of hydrogen that can be stored in subterranean reservoirs for long-term hydrogen storage.

References

1.
Turner
,
J.
,
2004
, “
Sustainable Hydrogen Production
,”
Science
,
305
(
5686
), pp.
972
974
.10.1126/science.1103197
2.
Dawood
,
F.
,
Anda
,
M.
, and
Shafiullah
,
G. M.
,
2020
, “
Hydrogen Production for Energy: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3847
3869
.10.1016/j.ijhydene.2019.12.059
3.
Katterbauer
,
K.
,
Marsala
,
A. F.
,
Schoepf
,
V.
, and
Donzier
,
E.
,
2021
, “
A Novel Artificial Intelligence Automatic Detection Framework to Increase Reliability of PLT Gas Bubble Sensing
,”
J. Pet. Explor. Prod.
,
11
(
3
), pp.
1263
1273
.10.1007/s13202-021-01098-1
4.
Al Shehri
,
A.
, and
Shewoil
,
A.
,
2020
, “
Connectivity Analysis of Wireless FracBots Network in Hydraulic Fractures Environment
,”
Offshore Technology Conference Asia
, Kuala Lumpur, Malaysia, Nov.
2
6
.10.4043/30203-MS
5.
Sivaramakrishnan
,
R.
,
Shanmugam
,
S.
,
Sekar
,
M.
,
Mathimani
,
T.
,
Incharoensakdi
,
A.
,
Kim
,
S.-H.
,
Parthiban
,
A.
,
Edwin Geo
,
V.
,
Brindhadevi
,
K.
, and
Pugazhendhi
,
A.
,
2021
, “
Insights on Biological Hydrogen Production Routes and Potential Microorganisms for High Hydrogen Yield
,”
Fuel
,
291
, p.
120136
.10.1016/j.fuel.2021.120136
6.
Katterbauer
,
K.
,
Qasim
,
A.
,
Marsala
,
A.
, and
Yousef
,
A.
,
2021
, “
A Data Driven Artificial Intelligence Framework for Hydrogen Production Optimization in Waterflooded Hydrocarbon Reservoir
,”
Abu Dhabi International Petroleum Exhibition & Conference
, Abu Dhabi, UAE, Nov.
15
18
.10.2118/207847-MS
7.
Balachandar
,
G.
,
Varanasi
,
J. L.
,
Singh
,
V.
,
Singh
,
H.
, and
Das
,
D.
,
2020
, “
Biological Hydrogen Production Via Dark Fermentation: A Holistic Approach From Lab-Scale to Pilot-Scale
,”
Int. J. Hydrogen Energy
,
45
(
8
), pp.
5202
5215
.10.1016/j.ijhydene.2019.09.006
8.
Katterbauer
,
K.
,
Hoteit
,
I.
, and
Sun
,
S.
,
2014a
, “
A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data
,”
Offshore Technology Conference
, Kuala Lumpur, Malaysia, Mar.
25
28
.10.4043/24916-MS
9.
Katterbauer
,
K.
,
Hoteit
,
I.
, and
Sun
,
S.
,
2014b
, “
EMSE: Synergizing EM and Seismic Data Attributes for Enhanced Forecasts of Reservoirs
,”
J. Pet. Sci. Eng.
,
122
, pp.
396
410
.10.1016/j.petrol.2014.07.039
10.
Katterbauer
,
K.
,
Hoteit
,
I.
, and
Sun
,
S.
,
2015
, “
History Matching of Electromagnetically Heated Reservoirs Incorporating Full-Wavefield Seismic and Electromagnetic Imaging
,”
SPE J.
,
20
(
05
), pp.
923
941
.10.2118/173896-PA
11.
Pourrahmani
,
H.
, and
Moghimi
,
M.
,
2019
, “
Exergoeconomic Analysis and Multi-Objective Optimization of a Novel Continuous Solar-Driven Hydrogen Production System Assisted by Phase Change Material Thermal Storage System
,”
Energy
,
189
, p.
116170
.10.1016/j.energy.2019.116170
12.
Katterbauer
,
K.
,
Hoteit
,
I.
, and
Sun
,
S.
,
2016
, “
Synergizing Crosswell Seismic and Electromagnetic Techniques for Enhancing Reservoir Characterization
,”
SPE J.
,
21
(
03
), pp.
909
927
.10.2118/174559-PA
13.
Sadeghi
,
S.
, and
Ghandehariun
,
S.
,
2020
, “
Thermodynamic Analysis and Optimization of an Integrated Solar Thermochemical Hydrogen Production System
,”
Int. J. Hydrogen Energy
,
45
(
53
), pp.
28426
28436
.10.1016/j.ijhydene.2020.07.203
14.
Katterbauer
,
K.
,
Al Qasim
,
A.
,
Al Shehri
,
A.
, and
Yousif
,
A.
,
2022
, “
A Novel Artificial Intelligence Framework for the Optimal Control of Wireless Temperature Sensors for Optimizing Oxygen Injection in Subsurface Reservoirs
,”
Offshore Technology Conference Asia
, Kuala Lumpur, Malaysia, Mar.
22
25
.10.4043/31558-MS
15.
Ursua
,
A.
,
Gandia
,
L. M.
, and
Sanchis
,
P.
,
2012
, “
Hydrogen Production From Water Electrolysis: Current Status and Future Trends
,”
Proc. IEEE
,
100
(
2
), pp.
410
426
.10.1109/JPROC.2011.2156750
16.
Chi
,
J.
, and
Yu
,
H.
,
2018
, “
Water Electrolysis Based on Renewable Energy for Hydrogen Production
,”
Chin. J. Catal.
,
39
(
3
), pp.
390
394
.10.1016/S1872-2067(17)62949-8
17.
Toghyani
,
S.
,
Baniasadi
,
E.
, and
Afshari
,
E.
,
2019
, “
Numerical Simulation and Exergoeconomic Analysis of a High Temperature Polymer Exchange Membrane Electrolyzer
,”
Int. J. Hydrogen Energy
,
44
(
60
), pp.
31731
31744
.10.1016/j.ijhydene.2019.10.087
18.
Yue
,
M.
,
Lambert
,
H.
,
Pahon
,
E.
,
Roche
, RJemei
., and
Hissel
,
D.
,
2021
, “
Hydrogen Energy Systems: A Critical Reviewof Technologies, Applications, Trends and Challenges
,”
Renewable Andsustainable Energy Reviews
,
146
, p.
111180
10.1016/j.rser.2021.111180
19.
Al Zahrani
,
A. A.
, and
Dincer
,
I.
,
2017
, “
Thermodynamic and Electrochemical Analyses of a Solid Oxide Electrolyzer for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21404
21413
.10.1016/j.ijhydene.2017.03.186
20.
Khan
,
M. A.
,
Al-Attas
,
T.
,
Roy
,
S.
,
Rahman
,
M. M.
,
Ghaffour
,
N.
,
Thangadurai
,
V.
,
Larter
,
S.
,
Hu
,
J.
,
Ajayan
,
P. M.
, and
Kibria
,
M. G.
,
2021
, “
Seawater Electrolysis for Hydrogen Production: A Solution Looking for a Problem?
,”
Energy Environ. Sci.
,
14
(
9
), pp.
4831
4839
.10.1039/D1EE00870F
21.
Chen
,
S.
,
Pei
,
C.
, and
Gong
,
J.
,
2019
, “
Insights Into Interface Engineering in Steam Reforming Reactions for Hydrogen Production
,”
Energy Environ. Sci.
,
12
(
12
), pp.
3473
3495
.10.1039/C9EE02808K
22.
Ranjekar
,
A. M.
, and
Yadav
,
G. D.
,
2021
, “
Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope
,”
Ind. Eng. Chem. Res.
,
60
(
1
), pp.
89
113
.10.1021/acs.iecr.0c05041
23.
Yu
,
W.
,
Huang
,
W.
,
Liu
,
H.
,
Wang
,
K.
,
Wen
,
K.
,
Gong
,
J.
, and
Zhang
,
M.
,
2020
, “
A Systematic Method for Assessing the Operating Reliability of the Underground Gas Storage in Multiple Salt Caverns
,”
J. Energy Storage
,
31
, p.
101675
.10.1016/j.est.2020.101675
24.
Reitenbach
,
V.
,
Ganzer
,
L.
,
Albrecht
,
D.
, and
Hagemann
,
B.
,
2015
, “
Influence of Added Hydrogen on Underground Gas Storage: A Review of Key Issues
,”
Environ. Earth Sci.
,
73
(
11
), pp.
6927
6937
.10.1007/s12665-015-4176-2
25.
Wang
,
X.
,
Pan
,
L.
,
Lau
,
H. C.
,
Zhang
,
M.
,
Li
,
L.
, and
Zhou
,
Q.
,
2018
, “
Reservoir Volume of Gas Hydrate Stability Zones in Permafrost Regions of China
,”
Appl. Energy
,
225
, pp.
486
500
.10.1016/j.apenergy.2018.04.125
26.
Knox
,
D. A.
,
Parr
,
I.
,
Tan
,
I.
,
DeLange
,
F.
,
Davies
,
J.
,
McVey
,
G.
, and
Pritchard
,
D. P.
,
2008
, “
New Zealand Gas Development Sets New Performance and Environmental Milestones Onshore and Offshore-The Role of Drilling Fluid Selection and Performance in the Pohokura Development
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Perth, Australia, Oct.
20
22
.10.2118/114653-MS
27.
Sim
,
C. Y.
, and
Adam
,
L.
,
2016
, “
Are Changes in Time‐Lapse Seismic Data Due to Fluid Substitution or Rock Dissolution? A CO2 Sequestration Feasibility Study at the Pohokura Field, New Zealand
,”
Geophys. Prospect.
,
64
(
4
), pp.
967
986
.10.1111/1365-2478.12405
28.
Uruski
,
C.
,
2010
, “
New Zealand's Deepwater Frontier
,”
Mar. Pet. Geol.
,
27
(
9
), pp.
2005
2026
.10.1016/j.marpetgeo.2010.05.010
You do not currently have access to this content.