Abstract

Mitigation of gust-induced separation and aerodynamic loads using a high-frequency blowing/suction slot is demonstrated using high-order implicit large eddy simulation (LES). This approach was previously shown to be effective at alleviating dynamic stall on pitching wings. A NACA0012 wing section operating at a transitional chord-based Reynolds number of Rec=500,000, subsonic freestream Mach number of M=0.1, and angles of attack of α = 4 deg and 12 deg is subjected to discrete 1-cos transverse gusts. Gust-induced stall is demonstrated and then active flow control (AFC) is applied to cases vulnerable to gust-induced stall. The flow control strategy is shown to be effective at stall suppression during gust encounter, thereby providing partial alleviation of gust induced loads. This approach is most effective at attenuating pitching moment increment.

References

1.
Li
,
Y.
, and
Qin
,
N.
,
2022
, “
A Review of Flow Control for Gust Load Alleviation
,”
Appl. Sci.
,
12
(
20
), p.
10537
.10.3390/app122010537
2.
Jones
,
A.
, and
Cetiner
,
O.
,
2020
, “
Overview of NATO AVT-282: Unsteady Aerodynamic Response of Rigid Wings in Gust Encounters
,”
AIAA
Paper No. 2020-0078.10.2514/6.2020-0078
3.
Jones
,
A. R.
,
2020
, “
Gust Encounters of Rigid Wings: Taming the Parameter Space
,”
Phys. Rev. Fluids
,
5
(
11
), p.
110513
.10.1103/PhysRevFluids.5.110513
4.
Jones
,
A. R.
, and
Cetiner
,
O.
,
2021
, “
Overview of Unsteady Aerodynamic Response of Rigid Wings in Gust Encounters
,”
AIAA J.
,
59
(
2
), pp.
731
736
.10.2514/1.J059602
5.
Jones
,
A. R.
,
Cetiner
,
O.
, and
Smith
,
M. J.
,
2022
, “
Physics and Modeling of Large Flow Disturbances: Discrete Gust Encounters for Moder Air Vehicles
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
469
493
.10.1146/annurev-fluid-031621-085520
6.
Barnes
,
C. J.
, and
Visbal
,
M. R.
,
2020
, “
Angle of Attack and Core Size Effects on Transitional Vortical-Gust–Airfoil Interactions
,”
AIAA J.
,
58
(
7
), pp.
2881
2898
.10.2514/1.J058654
7.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2011
, “
Exploration of Plasma-Based Control for low-Reynolds Number Airfoil Gust Interaction
,”
Int. J. Comput. Fluid Dyn.
,
25
(
10
), pp.
509
533
.10.1080/10618562.2011.632374
8.
Al-Battal
,
N.
,
Cleaver
,
D.
, and
Gursul
,
I.
,
2018
, “
Lift Reduction by Counter Flowing Wall Jets
,”
Aerosp. Sci. Technol.
,
78
, pp.
682
695
.10.1016/j.ast.2018.05.025
9.
Al-Battal
,
N.
,
Cleaver
,
D.
, and
Gursul
,
I.
,
2019
, “
Unsteady Actuation of Counter-Flowing Wall Jets for Gust Load Attenuation
,”
Aerosp. Sci. Technol.
,
89
, pp.
175
191
.10.1016/j.ast.2019.03.053
10.
Li
,
Y.
, and
Qin
,
N.
,
2020
, “
Airfoil Gust Load Alleviation by Circulation Control
,”
Aerosp. Sci. Technol.
,
98
, p.
105622
.10.1016/j.ast.2019.105622
11.
Qian
,
Y.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2023
, “
Lift Alleviation in Travelling Vortical Gusts
,”
Aeronaut. J.
,
127
(
1316
), pp.
1676
1697
.10.1017/aer.2023.26
12.
Angulo
,
I. A.
, and
Babinsky
,
H.
,
2022
, “
Mitigation of Airfoil Gust Loads Through Pitch
,”
AIAA J.
,
60
(
9
), pp.
5273
5285
.10.2514/1.J061348
13.
Xu
,
X.
,
Gementzopoulos
,
A.
,
Sedky
,
G.
,
Jones
,
A. R.
, and
Lagor
,
F. D.
,
2023
, “
Iterative Maneuver Optimization in a Transverse Gust Encounter
,”
AIAA J.
,
61
(
5
), pp.
2083
2099
.10.2514/1.J062404
14.
Xu
,
X.
,
Gementzopoulos
,
A.
,
Sedky
,
G.
,
Jones
,
A. R.
, and
Lagor
,
F. D.
,
2023
, “
Design of Optimal Wing Maneuvers in a Transverse Gust Encounter Through Iterated Simulation or Experiment
,”
Theor. Comput. Fluid Dyn.
,
37
(
5
), pp.
464
484
.10.1007/s00162-023-00659-w
15.
Sedky
,
G.
,
Gementzopoulos
,
A.
,
Lagor
,
F. D.
, and
Jones
,
A. R.
,
2023
, “
Experimental Mitigation of Large-Amplitude Transverse Gusts Via Closed-Loop Pitch Control
,”
Phys. Rev. Fluids
,
8
(
6
), p.
064701
.10.1103/PhysRevFluids.8.064701
16.
Visbal
,
M. R.
,
2015
, “
Control of Dynamic Stall on a Pitching Airfoil Using High-Frequency Actuation
,”
AIAA
Paper No. 2015-1267.10.2514/6.2015-1267
17.
Visbal
,
M. R.
, and
Benton
,
S. I.
,
2018
, “
Exploration of High-Frequency Control of Dynamic Stall Using Large-Eddy Simulations
,”
AIAA J.
,
56
(
8
), pp.
2974
2991
.10.2514/1.J056720
18.
Benton
,
S. I.
, and
Visbal
,
M. R.
,
2019
, “
Effects of Compressibility on Dynamic-Stall Onset Using Large-Eddy Simulation
,”
AIAA
Paper No. 2019-0301.10.2514/6.2019-0301
19.
Visbal
,
M. R.
, and
Garmann
,
D. J.
,
2020
, “
Mitigation of Dynamic Stall Over a Pitching Finite Wing Using High-Frequency Actuation
,”
AIAA J.
,
58
(
1
), pp.
6
15
.10.2514/1.J058731
20.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.10.2514/2.591
21.
Gaitonde
,
D. V.
, and
Visbal
,
M. R.
,
1998
, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI
,”
Air Force Research Laboratory, Wright-Patterson AFB
, Report No.
AFRL-VI-WP-TR-1998-3060
.https://apps.dtic.mil/sti/pdfs/ADA364301.pdf
22.
Visbal
,
M. R.
,
Morgan
,
P. E.
, and
Rizzetta
,
D. P.
,
2003
, “
An Implicit LES Approach Based on High-Order Compact Differencing and Filtering Schemes
,”
AIAA
Paper No. 2003-4098.10.2514/6.2003-4098
23.
Lele
,
S.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
24.
Beam
,
R.
, and
Warming
,
R.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.10.2514/3.60901
25.
Pulliam
,
T.
, and
Chaussee
,
D.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.10.1016/0021-9991(81)90156-X
26.
Gaitonde
,
D.
, and
Visbal
,
M.
,
1999
, “
Further Development of a Navier-Stokes Solution Procedure Based on Higher-Order Formulas
,”
AIAA
Paper No. 1999-0557.10.2514/6.1999-0557
27.
Visbal
,
M. R.
, and
Rizzetta
,
D. P.
,
2002
, “
Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
836
847
.10.1115/1.1517564
28.
Garmann
,
D. J.
,
Visbal
,
M. R.
, and
Orkwis
,
P. D.
,
2013
, “
Comparative Study of Implicit and Subgrid-Scale Model Large-Eddy Simulation Techniques for low-Reynolds Number Airfoil Applications
,”
Int. J. Numer. Methods Fluids
,
71
(
12
), pp.
1546
1565
.10.1002/fld.3725
29.
Nguyen
,
L.
,
Golubev
,
V. V.
, and
Visbal
,
M. R.
, “
Numerical Study of Transitional SD7003 Airfoil Interacting With Canonical Upstream Flow Disturbances
,”
AIAA J.
,
56
(
1
), pp.
158
181
.10.2514/1.J055900
30.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
,
2015
, “
Implicit LES Computation of a Vortical-Gust/Wing Interaction for Transitional Flow
,”
AIAA
Paper No. 2015-1067.10.2514/6.2015-1067
31.
Barnes
,
C. J.
, and
Visbal
,
M. R.
,
2018
, “
Counterclockwise Vortical-Gust/Airfoil Interactions at a Transitional Reynolds Number
,”
AIAA J.
,
56
(
7
), pp.
2540
2552
.10.2514/1.J056711
32.
Barnes
,
C. J.
, and
Visbal
,
M. R.
,
2019
, “
Further Investigation on the Effect of Sweep on Parallel Vortical-Gust/Wing Interactions on a Finite Aspect-Ratio Wing
,”
AIAA
Paper No. 2019-3538.10.2514/6.2019-3538
33.
Sotoudeh
,
Z.
, and
Barnes
,
C. J.
,
2023
, “
Gust Response Analysis Using the Kriging Method for Laminar Flow
,”
AIAA J.
,
51
(
5
), pp.
2069
2082
.10.2514/1.J062272
34.
Sherer
,
S. E.
, and
Scott
,
J. N.
,
2005
, “
High-Order Compact Finite Difference Methods on General Overset Grids
,”
J. Comput. Phys.
,
210
(
2
), pp.
459
496
.10.1016/j.jcp.2005.04.017
35.
Visbal
,
M. R.
,
2014
, “
Numerical Exploration of Flow Control for Delay of Dynamic Stall on a Pitching Airfoil
,”
AIAA
Paper No. 2014-2044.10.2514/6.2014-2044
36.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.10.2514/1.J050232
37.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
(
1
), pp.
1
4
.10.1006/jcph.1994.1112
38.
Hummel
,
D.
,
1995
, “
Formation Flight as an Energy-Saving Mechanism
,”
Israel J. Zool.
,
41
(
3
), pp.
261
278
.10.1080/00212210.1995.10688799
You do not currently have access to this content.