Abstract

Turbulent spots are regions of turbulence surrounded by laminar flow that appear during the late stages of boundary layer transition. While turbulent spots are often studied in isolation, they usually occur near low-speed streaks and other disturbances during transition. This paper investigates the interaction between a turbulent spot and a subcritical low-speed streak using direct numerical simulations. The results, analyzed from streak instability and vorticity points of view, reveal mechanisms of the destabilization of the streak by the spot and provide insights into spot evolution in a realistic environment. Additional simulations involving intentional local control of portions of the streak provide further insight into the interaction mechanisms and potential transition mitigation strategies.

References

1.
Walker
,
G. J.
,
1993
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
,
115
(
2
), pp.
207
216
.10.1115/1.2929223
2.
Ehrmann
,
R. S.
,
Wilcox
,
B.
,
White
,
E. B.
, and
Maniaci
,
D. C.
,
2017
, “
Effect of Surface Roughness on Wind Turbine Performance
,”
Sandia National Laboratory (SNL-NM)
,
Albuquerque, NM
, Report No.
SAND2017-10669
.https://energy.sandia.gov/wpcontent/uploads/2017/10/LEE_Ehrmann_SAND2017-10669.pdf
3.
Schneider
,
S. P.
,
2004
, “
Hypersonic Laminar–Turbulent Transition on Circular Cones and Scramjet Forebodies
,”
Prog. Aerosp. Sci.
,
40
(
1–2
), pp.
1
50
.10.1016/j.paerosci.2003.11.001
4.
Frauholz
,
S.
,
Reinartz
,
B. U.
,
Müller
,
S.
, and
Behr
,
M.
,
2015
, “
Transition Prediction for Scramjets Using γ-Reθt Model Coupled to Two Turbulence Models
,”
J. Propul. Power
,
31
(
5
), pp.
1404
1422
.10.2514/1.B35630
5.
Bragg
,
M.
, and
Gregorek
,
G.
,
1989
, “
Environmentally Induced Surface Roughness Effects on Laminar Flow Airfoils-Implications for Flight Safety
,”
Aircraft Design and Operations Meeting
, Seattle, WA, July 31–Aug. 2, p.
2049
.10.2514/6.1989-2049
6.
Moens
,
F.
,
Perraud
,
J.
,
Krumbein
,
A.
,
Toulorge
,
T.
,
Iannelli
,
P.
,
Eliasson
,
P.
, and
Hanifi
,
A.
,
2008
, “
Transition Prediction and Impact on a Three-Dimensional High-Lift-Wing Configuration
,”
J. Aircr.
,
45
(
5
), pp.
1751
1766
.10.2514/1.36238
7.
Wu
,
X.
,
2023
, “
New Insights Into Turbulent Spots
,”
Annu. Rev. Fluid Mech.
,
55
(
1
), pp.
45
75
.10.1146/annurev-fluid-120720-021813
8.
Zaki
,
T. A.
,
2013
, “
From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition
,”
Flow Turb. Combust.
,
91
(
3
), pp.
451
473
.10.1007/s10494-013-9502-8
9.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary layer-Part I
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.10.2514/8.2010
10.
Wygnanski
,
I.
,
Sokolov
,
M.
, and
Friedman
,
D.
,
1976
, “
On a Turbulent ‘Spot’ in a Laminar Boundary Layer
,”
J. Fluid Mech.
,
78
(
4
), pp.
785
819
.10.1017/S0022112076002747
11.
Cantwell
,
B.
,
Coles
,
D.
, and
Dimotakis
,
P.
,
1978
, “
Structure and Entrainment in the Plane of Symmetry of a Turbulent Spot
,”
J. Fluid Mech.
,
87
(
4
), p.
641
.10.1017/S0022112078001809
12.
Narasimha
,
R.
,
Subramanian
,
C.
, and
Narayanan
,
M. B.
,
1984
, “
Turbulent Spot Growth in Favorable Pressure Gradients
,”
AIAA J.
,
22
(
6
), pp.
837
839
.10.2514/3.8689
13.
Katz
,
Y.
,
Seifert
,
A.
, and
Wygnanski
,
I.
,
1990
, “
On the Evolution of the Turbulent Spot in a Laminar Boundary Layer With a Favourable Pressure Gradient
,”
J. Fluid Mech.
,
221
, pp.
1
22
.10.1017/S0022112090003469
14.
Singer
,
B. A.
, and
Joslin
,
R. D.
,
1994
, “
Metamorphosis of a Hairpin Vortex Into a Young Turbulent Spot
,”
Phys. Fluids
,
6
(
11
), pp.
3724
3736
.10.1063/1.868363
15.
Strand
,
J. S.
, and
Goldstein
,
D. B.
,
2011
, “
Direct Numerical Simulations of Riblets to Constrain the Growth of Turbulent Spots
,”
J. Fluid Mech.
,
668
, pp.
267
292
.10.1017/S0022112010005033
16.
Goldstein
,
D.
,
Chu
,
J.
, and
Brown
,
G.
,
2017
, “
Lateral Spreading Mechanism of a Turbulent Spot and a Turbulent Wedge
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
21
35
.10.1007/s10494-016-9748-z
17.
Fransson
,
J. H.
,
2010
, “
Turbulent Spot Evolution in Spatially Invariant Boundary Layers
,”
Phys. Rev. E
,
81
(
3
), p.
035301
.10.1103/PhysRevE.81.035301
18.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2014
, “
Numerical Investigation of the Generation and Growth of Coherent Flow Structures in a Triggered Turbulent Spot
,”
J. Fluid Mech.
,
759
, pp.
257
294
.10.1017/jfm.2014.538
19.
Wu
,
S.
, and
Yaras
,
M. I.
,
2021
, “
Interaction of a Turbulent Spot With a Two-Dimensional Cavity
,”
Phys. Fluids
,
33
(
9
), p.
094114
.10.1063/5.0062617
20.
Wang
,
Y. X.
,
Choi
,
K. S.
,
Gaster
,
M.
,
Atkin
,
C.
,
Borodulin
,
V.
, and
Kachanov
,
Y.
,
2021
, “
Early Development of Artificially Initiated Turbulent Spots
,”
J. Fluid Mech.
,
916
, p.
A1
.10.1017/jfm.2021.152
21.
Goparaju
,
H.
, and
Gaitonde
,
D.
,
2020
, “
Structure of Hypersonic Turbulent Spot Evolution
,”
APS Division of Fluid Dynamics Meeting Abstracts
, Virtual, Nov. 22–24, p.
H05-006
.https://meetings.aps.org/Meeting/DFD20/Session/H05.6
22.
Vaughan
,
N. J.
, and
Zaki
,
T. A.
,
2011
, “
Stability of Zero-Pressure-Gradient Boundary Layer Distorted by Unsteady Klebanoff Streaks
,”
J. Fluid Mech.
,
681
, pp.
116
153
.10.1017/jfm.2011.177
23.
Hack
,
M. J. P.
, and
Zaki
,
T. A.
,
2014
, “
Streak Instabilities in Boundary Layers Beneath Free-Stream Turbulence
,”
J. Fluid Mech.
,
741
, pp.
280
315
.10.1017/jfm.2013.677
24.
Berger
,
A. R.
,
McMillan
,
M. N.
,
White
,
E. B.
,
Suryanarayanan
,
S.
, and
Goldstein
,
D. B.
,
2017
, “
Suppression of Transition Behind a Discrete Roughness Element Using a Downstream Element
,”
Tenth International Symposium on Turbulence and Shear Flow Phenomena
, Swissotel Chicago, Chicago, IL July 7–9, Paper No. 384.http://www.tsfp-conference.org/proceedings/2017/2/384.pdf
25.
Suryanarayanan
,
S.
,
Goldstein
,
D. B.
,
White
,
E. B.
, and
Brown
,
G. L.
,
2022
, “
Mechanics of Boundary Layer Transition Induced by Multiple Discrete Roughness Elements
,” Proceedings of the 12th International Symposium on Turbulence and Shear Flow Phenomena (
TSFP-12
),
Osaka
, Japan, July 19–22, Paper No. 398.http://www.tsfp-conference.org/proceedings/2022/398.pdf
26.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.10.1115/1.2929110
27.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
28.
Goldstein
,
D. B.
,
Handler
,
R. A.
, and
Sirovich
,
L.
,
1995
, “
Direct Numerical Simulation of Turbulent Flow Over a Modeled Riblet Covered Surface
,”
J. Fluid Mech.
,
302
, pp.
333
376
.10.1017/S0022112095004125
29.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.10.1006/jcph.1993.1081
30.
Suryanarayanan
,
S.
,
Goldstein
,
D. B.
, and
Brown
,
G. L.
,
2019
, “
Roughness Induced Transition: A Vorticity Point of View
,”
Phys. Fluids
,
31
(
2
), p.
024101
.10.1063/1.5075635
31.
Suryanarayanan
,
S.
,
Goldstein
,
D. B.
,
Berger
,
A. R.
,
White
,
E. B.
, and
Brown
,
G. L.
,
2020
, “
Mechanisms of Roughness-Induced Boundary-Layer Transition Control by Shielding
,”
AIAA J.
,
58
(
7
), pp.
2951
2963
.10.2514/1.J058950
32.
Bhushan
,
S.
,
Keith Walters
,
D.
,
Muthu
,
S.
, and
Pasiliao
,
C. L.
,
2018
, “
Identification of Bypass Transition Onset Markers Using Direct Numerical Simulation
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111107
.10.1115/1.4040299
You do not currently have access to this content.