Abstract

To simulate the microscale bubble distribution and its effect on high-frequency cavitation noise, we present a two-way transition and coupling Euler–Lagrange model. The model accounts for both cavity fission and environmental nucleation as sources of microscale bubbles, which are limited in the traditional mesh-based Euler models. We evaluate the model with the experimental data of truncated NACA0009 hydrofoil as well as the measured bubble size distributions, showing satisfactory results for velocity distribution, cavity patterns, and power law scalings of bubble size. Based on an acoustic analogy, we find that the model produces sound waves with smaller wavelengths and higher frequencies than the Euler model, which are mainly attributed to two factors: (1) microscale bubbles with high natural frequency and (2) intense multiple cavity collapse/rebound behavior. This model is promising for predicting the full-spectrum of cavitation noise.

References

1.
Arndt
,
R.
,
Pennings
,
P.
,
Bosschers
,
J.
, and
Van Terwisga
,
T.
,
2015
, “
The Singing Vortex
,”
Interface Focus
,
5
(
5
), p.
20150025
.10.1098/rsfs.2015.0025
2.
Liu
,
Y.
,
Long
,
J.
,
Wu
,
Q.
,
Huang
,
B.
, and
Wang
,
G.
,
2021
, “
Data-Driven Modal Decomposition of Transient Cavitating Flow
,”
Phys. Fluids
,
33
(
11
), p.
113316
.10.1063/5.0073266
3.
Yamamoto
,
K.
,
Ukai
,
S.
,
Fukuda
,
T.
,
Kawasaki
,
S.
, and
Negishi
,
H.
,
2023
, “
Establishment of Prediction Model for Cavitation Surge Frequency and Onset in an Inducer Considering Dynamic Characteristics of Cavitation Compliance and Mass Flow Gain Factor
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091501
.10.1115/1.4062377
4.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.10.1115/1.4030914
5.
Rajan
,
G. K.
, and
Cimbala
,
J. M.
,
2016
, “
Computational and Theoretical Analyses of the Precessing Vortex Rope in a Simplified Draft Tube of a Scaled Model of a Francis Turbine
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021102
.10.1115/1.4034693
6.
Khozaei
,
M. H.
,
Favrel
,
A.
,
Masuko
,
T.
,
Yamaguchi
,
N.
, and
Miyagawa
,
K.
,
2021
, “
Generation of Twin Vortex Rope in the Draft-Tube Elbow of a Francis Turbine During Deep Part-Load Operation
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101206
.10.1115/1.4051150
7.
Park
,
J.
, and
Seong
,
W.
,
2017
, “
Experimental Study on the Effect of Number of Bubble Occurrences on Tip Vortex Cavitation Noise Scaling Law
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061303
.10.1115/1.4035929
8.
Deng
,
L.
,
Long
,
Y.
, and
Ji
,
B.
,
2022
, “
Delayed Detached Eddy Simulation and Vorticity Analysis of Cavitating Flow Around a Marine Propeller Behind the Hull
,”
Ocean Eng.
,
264
, p.
112442
.10.1016/j.oceaneng.2022.112442
9.
Sun
,
W.
, and
Tan
,
L.
,
2020
, “
Cavitation-Vortex-Pressure Fluctuation Interaction in a Centrifugal Pump Using Bubble Rotation Modified Cavitation Model Under Partial Load
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051206
.10.1115/1.4045615
10.
Zhao
,
X.
,
Wang
,
Z.
,
Bai
,
X.
,
Cheng
,
H.
, and
Ji
,
B.
,
2023
, “
Unsteady Cavitation Dynamics and Pressure Statistical Analysis of a Hydrofoil Using the Compressible Cavitation Model
,”
Phys. Fluids
,
35
(
10
), p.
103307
.10.1063/5.0164191
11.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2005
, “
Scaling of Tip Vortex Cavitation Inception Noise With a Bubble Dynamics Model Accounting for Nuclei Size Distribution
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
55
65
.10.1115/1.1852476
12.
Zhang
,
A.-M.
,
Li
,
S.-M.
,
Cui
,
P.
,
Li
,
S.
, and
Liu
,
Y.-L.
,
2023
, “
A Unified Theory for Bubble Dynamics
,”
Phys. Fluids
,
35
(
3
), p.
033323
.10.1063/5.0145415
13.
Seo
,
J. H.
,
Moon
,
Y. J.
, and
Shin
,
B. R.
,
2008
, “
Prediction of Cavitating Flow Noise by Direct Numerical Simulation
,”
J. Comput. Phys.
,
227
(
13
), pp.
6511
6531
.10.1016/j.jcp.2008.03.016
14.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
,
Cao
,
S.
, and
Zhu
,
M.
,
2018
, “
Numerical Modelling of Unsteady Cavitation and Induced Noise Around a Marine Propeller
,”
Ocean Eng.
,
160
, pp.
143
155
.10.1016/j.oceaneng.2018.04.028
15.
Wang
,
X.
,
Bai
,
X.
,
Cheng
,
H.
,
Ji
,
B.
, and
Peng
,
X.
,
2023
, “
Numerical Investigation of Cavitating Tip Vortex Dynamics and How They Influence the Acoustic Characteristics
,”
Phys. Fluids
,
35
(
6
), p.
062119
.10.1063/5.0152580
16.
Ku
,
G.
,
Cho
,
J.
,
Cheong
,
C.
, and
Seol
,
H.
,
2021
, “
Numerical Investigation of Tip-Vortex Cavitation Noise of Submarine Propellers Using Hybrid Computational Hydro-Acoustic Approach
,”
Ocean Eng.
,
238
, p.
109693
.10.1016/j.oceaneng.2021.109693
17.
Krasilnikov
,
V.
,
Savio
,
L.
,
Koushan
,
K.
,
Felli
,
M.
,
Abdel-Maksoud
,
M.
,
Kimmerl
,
J.
,
Reichstein
,
N.
,
Fageraas
,
A.
, and
Sun
,
J.
,
2022
, “
Towards Reliable Prediction of Propeller Noise: Challenges and Findings of the Project ProNoVi
,”
Proceedings of the 7th International Symposium on Marine Propulsors smp'2022
, Wuxi, China, Oct. 17–21, Vol. 22.https://www.marinepropulsors.com/proceedings/2022/2-3-1.pdf
18.
Lidtke
,
A. K.
,
Turnock
,
S.
, and
Humphrey
,
V.
,
2016
, “
Characterisation of Sheet Cavity Noise of a Hydrofoil Using the Ffowcs Williams-Hawkings Acoustic Analogy
,”
Comput. Fluids
,
130
, pp.
8
23
.10.1016/j.compfluid.2016.02.014
19.
Ghahramani
,
E.
,
Ström
,
H.
, and
Bensow
,
R.
,
2021
, “
Numerical Simulation and Analysis of Multi-Scale Cavitating Flows
,”
J. Fluid Mech.
,
922
, p.
A22
.10.1017/jfm.2021.424
20.
Wang
,
Z.
,
Cheng
,
H.
, and
Ji
,
B.
,
2021
, “
Euler–Lagrange Study of Cavitating Turbulent Flow Around a Hydrofoil
,”
Phys. Fluids
,
33
(
11
), p.
112108
.10.1063/5.0070312
21.
Li
,
L.
,
Wang
,
Z.
,
Li
,
X.
, and
Zhu
,
Z.
,
2021
, “
Multiscale Modeling of Tip-Leakage Cavitating Flows by a Combined Volume of Fluid and Discrete Bubble Model
,”
Phys. Fluids
,
33
(
6
), p.
062104
.10.1063/5.0054795
22.
Wang
,
Z.
,
Cheng
,
H.
, and
Ji
,
B.
,
2022
, “
Numerical Prediction of Cavitation Erosion Risk in an Axisymmetric Nozzle Using a Multi-Scale Approach
,”
Phys. Fluids
,
34
(
6
), p.
062112
.10.1063/5.0095833
23.
Peters
,
A.
, and
el Moctar
,
O.
,
2020
, “
Numerical Assessment of Cavitation-Induced Erosion Using a Multi-Scale Euler–Lagrange Method
,”
J. Fluid Mech.
,
894
, p.
A19
.10.1017/jfm.2020.273
24.
Wang
,
Z.
,
Cheng
,
H.
,
Bensow
,
R. E.
,
Peng
,
X.
, and
Ji
,
B.
,
2023
, “
Numerical Assessment of Cavitation Erosion Risk on the Delft Twisted Hydrofoil Using a Hybrid Eulerian-Lagrangian Strategy
,”
Int. J. Mech. Sci.
,
259
, p.
108618
.10.1016/j.ijmecsci.2023.108618
25.
Lidtke
,
A. K.
,
2017
, “
Predicting Radiated Noise of Marine Propellers Using Acoustic Analogies and Hybrid Eulerian-Lagrangian Cavitation Models
,” Ph.D. thesis,
University of Southampton
,
Southampton, UK
.
26.
Li
,
L.
,
Niu
,
Y.
,
Wei
,
G.
,
Manickam
,
S.
,
Sun
,
X.
, and
Zhu
,
Z.
,
2023
, “
Investigation of Cavitation Noise Using Eulerian-Lagrangian Multiscale Modeling
,”
Ultrason. Sonochem.
,
97
, p.
106446
.10.1016/j.ultsonch.2023.106446
27.
Arndt
,
R. E. A.
, and
Keller
,
A. P.
,
1992
, “
Water Quality Effects on Cavitation Inception in a Trailing Vortex
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
430
438
.10.1115/1.2910049
28.
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
29.
Venning
,
J. A.
,
Pearce
,
B. W.
, and
Brandner
,
P. A.
,
2022
, “
Nucleation Effects on Cloud Cavitation About a Hydrofoil
,”
J. Fluid Mech.
,
947
, p.
A1
.10.1017/jfm.2022.535
30.
Hsiao
,
C.-T.
,
Ma
,
J.
, and
Chahine
,
G. L.
,
2017
, “
Multiscale Tow-Phase Flow Modeling of Sheet and Cloud Cavitation
,”
Int. J. Multiphase Flow
,
90
, pp.
102
117
.10.1016/j.ijmultiphaseflow.2016.12.007
31.
Ghahramani
,
E.
,
Arabnejad
,
M. H.
, and
Bensow
,
R. E.
,
2018
, “
Realizability Improvements to a Hybrid Mixture-Bubble Model for Simulation of Cavitating Flows
,”
Comput. Fluids
,
174
, pp.
135
143
.10.1016/j.compfluid.2018.06.025
32.
Peng
,
X.
,
Xu
,
L.
,
Cao
,
Y.
, and
Zhang
,
G.
,
2014
, “
Study on the Inner Structure and Evolution of Cloud Cavitation
,”
Proceedings of the 8th National Conference on Fluid Mechanics
, Lanzhou, China, Sept. 18–21, p.
78
.
33.
Liu
,
Y.
,
Zhang
,
H.
,
Zhang
,
W.
, and
Wang
,
B.
,
2023
, “
Bubble Size Distribution at Early Stage of Hydrodynamic Cloud Cavitation
,”
Phys. Fluids
,
35
, p.
063305
.10.1063/5.0154309
34.
Tian
,
B.
,
Huang
,
B.
, and
Li
,
L.
,
2023
, “
Investigation of Transient Sheet/Cloud Cavitating Flow Dynamics From Multiscale Perspective
,”
Phys. Fluids
,
35
(
7
), p.
077115
.10.1063/5.0159763
35.
Wang
,
Z.
,
Cheng
,
H.
,
Ji
,
B.
, and
Peng
,
X.
,
2023
, “
Numerical Investigation of Inner Structure and Its Formation Mechanism of Cloud Cavitating Flow
,”
Int. J. Multiphase Flow
,
165
, p.
104484
.10.1016/j.ijmultiphaseflow.2023.104484
36.
Francescantonio
,
P. D.
,
1997
, “
A New Boundary Integral Formulation for the Prediction of Sound Radiation
,”
J. Sound Vib.
,
202
(
4
), pp.
491
509
.10.1006/jsvi.1996.0843
37.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Proceedings of the 4th International Conference on Multiphase Flow
,
New Orleans, LA
, May 27–June 1, Vol. 1.https://www.researchgate.net/profile/Guenter-Schnerr-Professor-Dr-Inghabil/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics/links/56f6b62308ae81582bf2f940/Physical-and-Numerical-Modeling-of-Unsteady-Cavitation-Dynamics.pdf
38.
Amaya-Bower
,
L.
, and
Lee
,
T.
,
2010
, “
Single Bubble Rising Dynamics for Moderate Reynolds Number Using Lattice Boltzmann Method
,”
Comput. Fluids
,
39
(
7
), pp.
1191
1207
.10.1016/j.compfluid.2010.03.003
39.
Haberman
,
W. L.
, and
Morton
,
R.
,
1953
, “
An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids
,”
David Taylor Model Basin
,
Washington, DC
.
40.
Wang
,
X.
,
Bai
,
X.
,
Cheng
,
H.
,
Ji
,
B.
, and
Peng
,
X.
,
2023
, “
Numerical Investigation of How Gap Size Influences Tip Leakage Vortex Cavitation Inception Using a Eulerian–Lagrangian Method
,”
Phys. Fluids
,
35
(
1
), p.
012113
.10.1063/5.0131813
41.
Brennen
,
C. E.
,
2014
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
42.
Yakubov
,
S.
,
Cankurt
,
B.
,
Abdel-Maksoud
,
M.
, and
Rung
,
T.
,
2013
, “
Hybrid MPI/OpenMP Parallelization of an Euler–Lagrange Approach to Cavitation Modelling
,”
Comput. Fluids
,
80
, pp.
365
371
.10.1016/j.compfluid.2012.01.020
43.
Wang
,
Z.
,
Li
,
L.
,
Li
,
X.
,
Zhu
,
Z.
,
Yang
,
S.
, and
Yang
,
G.
,
2023
, “
Investigation on Multiscale Features of Cavitating Flow in Convergent-Divergent Test Section Using Eulerian–Lagrangian Method
,”
Int. J. Mech. Sci.
,
238
, p.
107853
.10.1016/j.ijmecsci.2022.107853
44.
Cheng
,
H.
,
Long
,
X.
,
Ji
,
B.
,
Peng
,
X.
, and
Farhat
,
M.
,
2021
, “
A New Euler-Lagrangian Cavitation Model for Tip-Vortex Cavitation With the Effect of Non-Condensable Gas
,”
Int. J. Multiphase Flow
,
134
, p.
103441
.10.1016/j.ijmultiphaseflow.2020.103441
45.
Song
,
M.
,
Xu
,
L.
,
Peng
,
X.
, and
Tang
,
D.
,
2017
, “
An Acoustic Approach to Determine Tip Vortex Cavitation Inception for an Elliptical Hydrofoil Considering Nuclei-Seeding
,”
Int. J. Multiphase Flow
,
90
, pp.
79
87
.10.1016/j.ijmultiphaseflow.2016.12.008
46.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Ma
,
J.
,
2020
, “
Dynamics of Dispersed Bubbly Flow Over a Lifting Surface: Gas Diffusion and Bubble Breakup Effects
,”
Ocean Eng.
,
213
, p.
107630
.10.1016/j.oceaneng.2020.107630
47.
Li
,
L.
,
Huo
,
Y.
,
Wang
,
Z.
,
Li
,
X.
, and
Zhu
,
Z.
,
2021
, “
Large Eddy Simulation of Tip-Leakage Cavitating Flow Using a Multiscale Cavitation Model and Investigation on Model Parameters
,”
Phys. Fluids
,
33
(
9
), p.
092104
.10.1063/5.0060590
48.
Mao
,
Y.
, and
Hu
,
Z.
,
2018
, “
Acoustic Analogy for Multiphase or Multicomponent Flow
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021006
.10.1115/1.4037702
49.
Wang
,
X.
,
Bai
,
X.
,
Cheng
,
H.
,
Yu
,
A.
, and
Ji
,
B.
,
2022
, “
LES Investigation of Cavitation Harmonic Tone Around a Delft Twist-11 Hydrofoil
,”
Ocean Eng.
,
253
, p.
111313
.10.1016/j.oceaneng.2022.111313
50.
Bai
,
X.
,
Cheng
,
H.
, and
Ji
,
B.
,
2022
, “
LES Investigation of the Noise Characteristics of Sheet and Tip Leakage Vortex Cavitating Flow
,”
Int. J. Multiphase Flow
,
146
, p.
103880
.10.1016/j.ijmultiphaseflow.2021.103880
51.
Williams
,
J. E. F.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London, Ser. A
,
264
(
1151
), pp.
321
342
.10.1098/rsta.1969.0031
52.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), pp.
1
13
.10.1007/s00348-014-1849-7
53.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Modell.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
54.
Liu
,
Y.
,
Wu
,
Q.
,
Huang
,
B.
,
Zhang
,
H.
,
Liang
,
W.
, and
Wang
,
G.
,
2021
, “
Decomposition of Unsteady Sheet/Cloud Cavitation Dynamics in Fluid-Structure Interaction Via POD and DMD Methods
,”
Int. J. Multiphase Flow
,
142
, p.
103690
.10.1016/j.ijmultiphaseflow.2021.103690
55.
Shams
,
E.
,
Finn
,
J.
, and
Apte
,
S.
,
2011
, “
A Numerical Scheme for Euler–Lagrange Simulation of Bubbly Flows in Complex Systems
,”
Int. J. Numer. Methods Fluids
,
67
(
12
), pp.
1865
1898
.10.1002/fld.2452
56.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
(
636–646
), pp.
299
361
.10.1098/rsta.1927.0008
57.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.10.1115/1.2819284
58.
Chen
,
Y.
,
Li
,
J.
,
Gong
,
Z.
,
Chen
,
X.
, and
Lu
,
C.
,
2019
, “
Large Eddy Simulation and Investigation on the Laminar-Turbulent Transition and Turbulence-Cavitation Interaction in the Cavitating Flow Around Hydrofoil
,”
Int. J. Multiphase Flow
,
112
, pp.
300
322
.10.1016/j.ijmultiphaseflow.2018.10.012
59.
Asnaghi
,
A.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2018
, “
Analysis of Tip Vortex Inception Prediction Methods
,”
Ocean Eng.
,
167
, pp.
187
203
.10.1016/j.oceaneng.2018.08.053
60.
Asnaghi
,
A.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2020
, “
Large Eddy Simulations of Cavitating Tip Vortex Flows
,”
Ocean Eng.
,
195
, p.
106703
.10.1016/j.oceaneng.2019.106703
61.
Pope
,
S. B.
,
2001
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
62.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
63.
Russell
,
P.
,
Barbaca
,
L.
,
Venning
,
J.
,
Pearce
,
B.
, and
Brandner
,
P.
,
2022
, “
The Influence of Nucleation on Cavitation Inception in Tip-Leakage Flows
,”
Phys. Fluids
,
35
(
1
), p.
013341
.10.1063/5.0132034
64.
Heyes
,
A.
,
Jones
,
R.
, and
Smith
,
D.
,
2004
, “
Wandering of Wing-Tip Vortices
,”
Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, isbon, Portugal, July 12–15, pp.
33
35
.
65.
Bailey
,
S.
, and
Tavoularis
,
S.
,
2008
, “
Measurements of the Velocity Field of a Wing-Tip Vortex, Wandering in Grid Turbulence
,”
J. Fluid Mech.
,
601
, pp.
281
315
.10.1017/S0022112008000694
66.
Oweis
,
G. F.
,
Van der Hout
,
I.
,
Iyer
,
C.
,
Tryggvason
,
G.
, and
Ceccio
,
S. L.
,
2005
, “
Capture and Inception of Bubbles Near Line Vortices
,”
Phys. Fluids
,
17
(
2
), p.
022105
.10.1063/1.1834916
67.
Zhang
,
L.
,
Chen
,
L.
, and
Shao
,
X.
,
2016
, “
The Migration and Growth of Nuclei in an Ideal Vortex Flow
,”
Phys. Fluids
,
28
(
12
), p.
123305
.10.1063/1.4972275
68.
Li
,
J.
, and
Carrica
,
P. M.
,
2021
, “
A Population Balance Cavitation Model
,”
Int. J. Multiphase Flow
,
138
, p.
103617
.10.1016/j.ijmultiphaseflow.2021.103617
69.
Müller
,
S.
,
Bachmann
,
M.
,
Kröninger
,
D.
,
Kurz
,
T.
, and
Helluy
,
P.
,
2009
, “
Comparison and Validation of Compressible Flow Simulations of Laser-Induced Cavitation Bubbles
,”
Comput. Fluids
,
38
(
9
), pp.
1850
1862
.10.1016/j.compfluid.2009.04.004
70.
Keller
,
J. B.
, and
Miksis
,
M.
,
1980
, “
Bubble Oscillations of Large Amplitude
,”
J. Acoust. Soc. Am.
,
68
(
2
), pp.
628
633
.10.1121/1.384720
71.
Foeth
,
E.-J.
,
2008
,
The Structure of Three-Dimensional Sheet Cavitation
, Doctoral thesis,
Delft University of Technology
,
Delft, Netherlands
.
72.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.10.1063/1.870344
73.
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
2006
,
Fundamentals of Cavitation
,
Springer Science and Business Media
,
New York
.
74.
Reisman
,
G.
,
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
75.
Trilling
,
L.
,
1952
, “
The Collapse and Rebound of a Gas Bubble
,”
J. Appl. Phys.
,
23
(
1
), pp.
14
17
.10.1063/1.1701962
76.
Luo
,
J.
,
Xu
,
W.
,
Deng
,
J.
,
Zhai
,
Y.
, and
Zhang
,
Q.
,
2018
, “
Experimental Study on the Impact Characteristics of Cavitation Bubble Collapse on a Wall
,”
Water
,
10
(
9
), p.
1262
.10.3390/w10091262
You do not currently have access to this content.