Abstract

Centrifugal pumps with guide vanes (GVs) are widely used in a pump as turbine, energy storage pump station, and water diversion project. The objective of this study is to establish a design method of centrifugal pumps for matching impeller outlet and diffuser inlet to reduce hydraulic loss. To this end, a theoretical prediction model based on the fluid governing equation and the Oseen vortex model is proposed to predict the velocity moment downstream the impeller of the centrifugal pump. Then, a design method is established to design the impeller of the centrifugal pump with guide vanes. A centrifugal pump with a specific speed of 127 is used to validate the theoretical prediction model, and results of velocity moment show that the deviation between predicted and simulated results is below 0.5% in average. Finally, the design method is applied, and results show that the average efficiency of redesigned pump under the working conditions is 1.04% higher than that of baseline pump, which validates the reliability of proposed design method by theoretical prediction based on Oseen vortex. Analysis on velocity distribution and turbulence eddy dissipation shows that the design method based on Oseen vortex can effectively improve the flow pattern and pump performance.

References

1.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
, Berlin, Heidelberg.
2.
Behnam
,
Z.
, and
Sanna
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
(
2015
), pp.
569
596
.10.1016/j.rser.2014.10.011
3.
Shi
,
F. X.
,
Yang
,
J. H.
, and
Wang
,
X. H.
,
2018
, “
Analysis on the Effect of Variable Guide Vane Numbers on the Performance of Pump as Turbine
,”
Adv. Mech. Eng.
,
10
(
6
), p.
168781401878079
.10.1177/1687814018780796
4.
Fu
,
X.
,
Li
,
D.
,
Wang
,
H.
,
Zhang
,
G.
,
Li
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Energy Analysis in a Pump-Turbine During the Load Rejection Process
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101107
.10.1115/1.4040038
5.
Li
,
Z.
,
Ding
,
H.
,
Shen
,
X.
, and
Jiang
,
Y.
,
2019
, “
Performance Optimization of High Specific Speed Centrifugal Pump Based on Orthogonal Experiment Design Method
,”
Processes
,
7
(
10
), p.
728
.10.3390/pr7100728
6.
Liu
,
G. Q.
, and
Chan
,
W. K.
,
2019
, “
Effects of Flow Coefficient on Miniature Centrifugal Pump Performance
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031103
.10.1115/1.4041228
7.
Kim
,
H. I.
,
Roh
,
T.-S.
,
Huh
,
H.
, and
Lee
,
H. J.
,
2022
, “
Development of Ultra-Low Specific Speed Centrifugal Pumps Design Method for Small Liquid Rocket Engines
,”
Aerospace
,
9
(
9
), p.
477
.10.3390/aerospace9090477
8.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pump: Theory, Design, and Application
, 2nd ed.,
Wiley
,
New York
.
9.
Zhang
,
J.
,
Yang
,
H.
,
Liu
,
H.
,
Xu
,
L.
, and
Lv
,
Y.
,
2021
, “
Pressure Fluctuation Characteristics of High-Speed Centrifugal Pump With Enlarged Flow Design
,”
Processes
,
9
(
12
), p.
2261
.10.3390/pr9122261
10.
Wang
,
C.
,
Zhang
,
Y.
,
Hou
,
H.
, and
Yuan
,
Z.
,
2020
, “
Theory and Application of Two-Dimension Viscous Hydraulic Design of the Ultra-Low Specific-Speed Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part A
,
234
(
1
), pp.
58
71
.10.1177/0957650919850420
11.
Zhang
,
J.
,
Xu
,
C.
,
Zhang
,
Y.
, and
Zhou
,
X.
,
2016
, “
Quasi-3D Hydraulic Design in the Application of an LNG Cryogenic Submerged Pump
,”
J. Nat. Gas Sci. Eng.
,
29
(
1
), pp.
89
100
.10.1016/j.jngse.2015.12.022
12.
Tan
,
L.
,
Cao
,
S.
,
Wang
,
Y.
, and
Zhu
,
B.
,
2012
, “
Direct and Inverse Iterative Design Method for Centrifugal Pump Impellers
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
6
), pp.
764
775
.10.1177/0957650912451411
13.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.10.1115/1.2841783
14.
Goto
,
A.
,
Nohmi
,
M.
,
Sakurai
,
T.
, and
Sogawa
,
Y.
,
2002
, “
Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
329
335
.10.1115/1.1471362
15.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021014
.10.1115/1.2950065
16.
Yang
,
W.
, and
Xiao
,
R. F.
,
2014
, “
Multiobjective Optimization Design of a Pump-Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025454
17.
Zhu
,
B.
,
Wang
,
X.
,
Tan
,
L.
,
Zhou
,
D.
,
Zhao
,
Y.
, and
Cao
,
S.
,
2015
, “
Optimization Design of a Reversible Pump-Turbine Runner With High Efficiency and Stability
,”
Renewable Energy
,
81
(
Sep
), pp.
366
376
.10.1016/j.renene.2015.03.050
18.
Qin
,
Y.
,
Li
,
D.
,
Wang
,
H.
,
Liu
,
Z.
,
Wei
,
X.
, and
Wang
,
X.
,
2022
, “
Multi-Objective Optimization Design on High Pressure Side of a Pump-Turbine Runner With High Efficiency
,”
Renewable Energy
,
190
, pp.
103
120
.10.1016/j.renene.2022.03.085
19.
Xu
,
Y.
,
Tan
,
L.
,
Cao
,
S.
, and
Qu
,
W.
,
2017
, “
Multiparameter and Multiobjective Optimization Design of Centrifugal Pump Based on Orthogonal Method
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
14
), pp.
2569
2579
.10.1177/0954406216640303
20.
Liu
,
Y.-Y.
,
Yang
,
G.
,
Xu
,
Y.
,
Peng
,
F.
, and
Wang
,
L.-Q.
,
2020
, “
Effect of Space Diffuser on Flow Characteristics of a Centrifugal Pump by Computational Fluid Dynamic Analysis
,”
Plos One
,
15
(
2
), p.
e228051
.10.1371/journal.pone.0228051
21.
Si
,
Q.
,
Dupont
,
P.
,
Bayeul-Lainé
,
A.-C.
,
Dazin
,
A.
,
Roussette
,
O.
, and
Yuan
,
S.
,
2015
, “
An Experimental Study of the Flow Field Inside the Diffuser Passage of a Laboratory Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061105
.10.1115/1.4029671
22.
Klimovskii
,
K. K.
,
2008
, “
Improving the Efficiency of a Centrifugal Pump
,”
Therm. Eng.
,
55
(
3
), pp.
253
254
.
23.
Wang
,
C.
,
Shi
,
W.
,
Wang
,
X.
,
Jiang
,
X.
,
Yang
,
Y.
,
Li
,
W.
, and
Zhou
,
L.
,
2017
, “
Optimal Design of Multistage Centrifugal Pump Based on the Combined Energy Loss Model and Computational Fluid Dynamics
,”
Appl. Energy
,
187
, pp.
10
26
.10.1016/j.apenergy.2016.11.046
24.
Yan
,
X.
,
Kan
,
K.
,
Zheng
,
Y.
,
Chen
,
H.
, and
Binama
,
M.
,
2022
, “
Entropy Production Evaluation Within a Prototype Pump-Turbine Operated in Pump Mode for a Wide Range of Flow Conditions
,”
Processes
,
10
(
10
), p.
2058
.10.3390/pr10102058
25.
Li
,
W. G.
,
2011
, “
Blade Exit Angle Effects on Performance of a Standard Industrial Centrifugal Oil Pump
,”
J. Appl. Fluid Mech.
,
4
(
2
), pp.
105
119
.10.36884/JAFM.4.02.11923
26.
Aysheshim
,
W.
, and
Stoffel
,
B.
,
2001
, “
Experimental Investigations on a Centrifugal Pump Stage With and Without a Vaned Diffuser
,”
LHB-Hydrosci. J.
,
87
(
3–4
), pp.
70
76
.10.1051/lhb/2001040
27.
Ozturk
,
A.
,
Aydin
,
K.
, and
Sahin
,
B.
,
2009
, “
Effect of Impeller-Diffuser Radial Gap Ratio in a Centrifugal Pump
,”
J. Sci. Ind. Res.
,
68
(
3
), pp.
203
213
.
28.
Zhang
,
R. H.
,
Chen
,
X. B.
, and
Luo
,
J. Q.
,
2021
, “
Knowledge Mining of Low Specific Speed Centrifugal Pump Impeller Based on Proper Orthogonal Decomposition Method
,”
J. Therm. Sci.
,
30
(
3
), pp.
840
848
.10.1007/s11630-020-1356-5
29.
Tavares Dias do Rio Vaz
,
D. A.
,
Vaz
,
J. R. P.
,
Mesquita
,
A. L. A.
,
Pinho
,
J. T.
, and
Pinho Brasil Junior
,
A. C.
,
2013
, “
Optimum Aerodynamic Design for Wind Turbine Blade With a Rankine Vortex Wake
,”
Renewable Energy
,
55
, pp.
296
304
.10.1016/j.renene.2012.12.027
30.
Tan
,
M.
,
Zhao
,
K.
,
Wu
,
X.
,
Liu
,
H.
,
Shao
,
C.
, and
Pan
,
B.
,
2023
, “
Analysis on Flow Structure in a Vortex Pump Under All Flow Rates
,”
Water Supply
,
23
(
5
), pp.
1874
1884
.10.2166/ws.2023.113
31.
Gerlach
,
A.
,
Preuss
,
E.
,
Thamsen
,
P. U.
, and
Lykholt-Ustrup
,
F.
,
2017
, “
Numerical Simulations of the Internal Flow Pattern of a Vortex Pump Compared to the Hamel-Oseen Vortex
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1711
1719
.10.1007/s12206-017-0319-6
32.
Liu
,
M.
,
Tan
,
L.
,
Xu
,
Y.
, and
Cao
,
S.
,
2020
, “
Optimization Design Method of Multi-Stage Multiphase Pump Based on Oseen Vortex
,”
J. Pet. Sci. Eng.
,
184
, p.
106532
.10.1016/j.petrol.2019.106532
33.
Yang
,
S.-S.
,
Liu
,
H.-L.
,
Kong
,
F.-Y.
,
Dai
,
C.
, and
Dong
,
L.
,
2013
, “
Experimental, Numerical, and Theoretical Research on Impeller Diameter Influencing Centrifugal Pump-as-Turbine
,”
J. Energy Eng.
,
139
(
4
), pp.
299
307
.10.1061/(ASCE)EY.1943-7897.0000128
34.
Tan
,
L.
,
Cao
,
S. L.
, and
Gui
,
S. B.
,
2010
, “
Hydraulic Design and Pre-Whirl Regulation Law of Inlet Guide Vane for Centrifugal Pump
,”
Sci. China Technol. Sci.
,
53
(
8
), pp.
2142
2151
.10.1007/s11431-010-4005-5
35.
Liu
,
Y.
,
Tan
,
L.
,
Liu
,
M.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Influence of Prewhirl Angle and Axial Distance on Energy Performance and Pressure Fluctuation for a Centrifugal Pump With Inlet Guide Vanes
,”
Energies
,
10
(
5
), p.
695
.10.3390/en10050695
36.
Liu
,
M.
,
Tan
,
L.
,
Liu
,
Y.
,
Xu
,
Y.
, and
Cao
,
S.
,
2018
, “
Controllable Velocity Moment and Prediction Model for Inlet Guide Vanes of a Centrifugal Pump
,”
Eng. Comput.
,
35
(
3
), pp.
1364
1382
.10.1108/EC-05-2017-0186
You do not currently have access to this content.