Abstract

The underlying physics ever behind the aerodynamics of an airfoil in ground effect (GE) are still not fully resolved. In this work, the aerodynamics for an airfoil in GE is investigated computationally for both transitional and turbulent flow regimes. Large eddy simulation (LES) is employed to explore the flow physics around a NACA0012 airfoil in ground vicinity, which is commonly used in wind energy applications. The angle of attack (AoA) is fixed at AoA = 10 deg, while the flight height to chord ratio (h/c) is variable. An analysis is conducted for the aerodynamic forces, i.e., the lift (CL), and the drag (CD). The behavior for the skin fiction drag (CDf) is explored in the light of the flow physics near the ground. In addition, the vortex shedding behavior is estimated at different height (h/c) for the transitional and turbulent flow regimes. At h/c = 0.2, the friction drag (CDf) is improved by 9.6% and 16.3% for the transitional and turbulent flow regimes, respectively. The results show that the frequencies for the vortex shedding decline significantly near the ground. This decline is correlated with the larger vortical structures and vortex developing mechanism.

References

1.
Abramowski
,
T.
,
2007
, “
Numerical Investigation of Airfoil in Ground Proximity
,”
J. Theor. Appl. Mech.
,
45
(
2
), pp.
425
436
.http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v45n2p425
2.
Ahmed
,
M. R.
, and
Sharma
,
S. D.
,
2005
, “
An Investigation on the Aerodynamics of a Symmetrical Airfoil in Ground Effect
,”
Exp. Therm. Fluid Sci.
,
29
(
6
), pp.
633
647
.10.1016/j.expthermflusci.2004.09.001
3.
Barber
,
T.
, and
Hall
,
S.
,
2006
, “
Aerodynamic Ground Effect: A Case Study of the Integration of CFD and Experiments
,”
Int. J. Veh. Des.
,
40
(
4
), p.
299
.10.1504/IJVD.2006.009068
4.
Jamei
,
S.
,
Maimun
,
A.
,
Mansor
,
S.
,
Azwadi
,
N.
, and
Priyanto
,
A.
,
2012
, “
Numerical Investigation on Aerodynamic Characteristics of a Compound Wing-In-Ground Effect
,”
J. Aircr.
,
49
(
5
), pp.
1297
1305
.10.2514/1.C031627
5.
Kinaci
,
O. K.
,
2014
, “
An Iterative Boundary Element Method for a Wing-In-Ground Effect
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
2
), pp.
282
296
.10.2478/IJNAOE-2013-0179
6.
Ito
,
Y.
, and
Iwashita
,
H.
,
2016
, “
Influences of the Wake Deformation and the Free-Surface on Steady Aerodynamics of Wings in the Ground Effect
,”
J. Jpn. Soc. Nav. Archit. Ocean Eng.
,
24
, pp.
51
68
.10.2534/jjasnaoe.24.51
7.
Bukanov
,
K. V.
, and
Zherekhov
,
V. V.
,
2016
, “
Studies of the Screening Surface Proximity on Integral Aerodynamic Characteristics of Rectangular High-Lift Wings of Different Aspect Ratio
,”
Russ. Aeronaut.
,
59
(
1
), pp.
36
43
.10.3103/S1068799816010062
8.
Luo
,
S. C.
, and
Chen
,
Y. S.
,
2012
, “
Ground Effect on Flow Past a Wing With a NACA0015 Cross-Section
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
18
28
.10.1016/j.expthermflusci.2012.01.014
9.
Mugunthan
,
M.
,
Pravalika
,
D.
,
Kiran Babu
,
K. M.
, and
Kumar
,
S. S.
,
2015
, “
Flow Field Investigation of Flat Bottom Aerofoil Under Ground Effect
,”
IOSR J. Mech. Civ. Eng.
,
12
(
4
), p.
83
88
.https://www.semanticscholar.org/paper/Flow-Field-Investigation-of-Flat-Bottom-Aerofoil-Journals-Mugunthan/ffa72324a7b436b7df94dcc233ad83320c717c05
10.
Roozbahani
,
M. H.
,
Shojaeefard
,
M. H.
,
Tahani
,
M.
, and
Niroee
,
M. H.
,
2011
, “
Numerical Investigation on the Aerodynamics Characteristics of a WIG Craft Airfoil With Different Turbulence Models
,” Proceedings of the
10th Conference of Iranian Aerospace Society
,
Tehran, Iran, Mar.
11.
Malti
,
K.
,
Hebow
,
H.
, and
Imine
,
B.
,
2016
, “
Numerical Study of Flow Around NACA0015 in Ground Effect
,”
EPJ Web Conf.
,
114
, p.
02069
.10.1051/epjconf/201611402069
12.
Jung
,
J. H.
,
Yoon
,
H. S.
,
Chun
,
H. H.
,
Hung
,
P. A.
, and
Elsamni
,
O. A.
,
2012
, “
Mean Flow Characteristics of Two-Dimensional Wings in Ground Effect
,”
Int. J. Nav. Archit. Ocean Eng.
,
4
(
2
), pp.
151
161
.10.2478/IJNAOE-2013-0086
13.
Hussain
,
I. Y.
, and
Abood
,
M. S.
,
2016
, “
Aerodynamic Characteristics of CLARK-Y Smoothed Inverted Wing With Ground Effects
,”
Int. J. Comput. Appl.
,
136
(
7
), pp.
42
50
.10.5120/ijca2016908502
14.
Al-Kayiem
,
H. H.
, and
Chelven
,
A. K.
,
2011
, “
An Investigation on the Aerodynamic Characteristics of 2-D Airfoil in Ground Collision
,”
J. Eng. Sci. Technol.
,
6
(
3
), pp.
371
383
.https://jestec.taylors.edu.my/Vol%206%20Issue%203%20Junel%2011/Vol_6(3)_369_381_KAYIEM.pdf
15.
Zhang
,
X.
, and
Zerihan
,
J.
,
2000
, “
Turbulent Wake Behind a Single Element Wing in Ground Effect
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July.
16.
Zerihan
,
J.
, and
Zhang
,
X.
,
2001
, “
Aerodynamics of Gurney Flaps on a Wing in Ground Effect
,”
AIAA J.
,
39
(
5
), pp.
772
780
.10.2514/2.1396
17.
Ahmed
,
M. R.
,
Takasaki
,
T.
, and
Kohama
,
Y.
,
2007
, “
Aerodynamics of a NACA4412 Airfoil in Ground Effect
,”
AIAA J.
,
45
(
1
), pp.
37
47
.10.2514/1.23872
18.
Mahon
,
S.
, and
Zhang
,
X.
,
2005
, “
Computational Analysis of Pressure and Wake Characteristics of an Aerofoil in Ground Effect
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
290
298
.10.1115/1.1891152
19.
Vogt
,
J. W.
, and
Barber
,
T. J.
,
2010
, “
Variation of Ground Effect Phenomena About Downforce Generating Tyrrell and NACA4412 Aerofoils
,”
Int. J. Aerodyn.
,
1
(
1
), pp.
82
96
.10.1504/IJAD.2010.031704
20.
Cravero
,
C.
,
2017
, “
Aerodynamic Performance Prediction of a Profile in Ground Effect With and Without a Gurney Flap
,”
ASME J. Fluids Eng
.,
139
(
3
), p.
031105
.10.1115/1.4035137
21.
Ockfen
,
A. E.
, and
Matveev
,
K. I.
,
2008
, “
Numerical Study of Wing Aerodynamics in Ground Proximity
,”
ASME
Paper No. IMECE2008-66115. 10.1115/ IMECE2008-66115
22.
Yang
,
Z. G.
,
Yang
,
W.
, and
Jia
,
Q.
,
2010
, “
Ground Viscous Effect on 2D Flow of Wing in Ground Proximity
,”
Eng. Appl. Comput. Fluid Mech.
,
4
(
4
), pp.
521
531
.10.1080/19942060.2010.11015338
23.
Ben-Nasr
,
O.
,
Hadjadj
,
A.
,
Chaudhuri
,
A.
, and
Shadloo
,
M. S.
,
2017
, “
Assessment of Subgrid-Scale Modeling for Large-Eddy Simulation of a Spatially-Evolving Compressible Turbulent Boundary Layer
,”
Comput. Fluids
,
151
, pp.
144
158
.10.1016/j.compfluid.2016.07.004
24.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
25.
Gregory
,
N.
, and
O’Reilly
,
C. L.
,
1970
, “
Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost
,” Ministry of Defence, London, NPL Technical Report, Reports and Memoranda No. 3726.
26.
Lehmkuhl
,
O.
,
Baez
,
A.
,
Rodrıguez
,
I.
, and
Perez-Segarra
,
C. D.
,
2011
, “
Direct Numerical Simulation and Large-Eddy Simulations of the Turbulent Flow Around a NACA-0012 Airfoil
,” Proceedings of the
7th International Conference on Computational Heat and Mass Transfer
, Istanbul, Turkey, July.
27.
Moore
,
N.
,
Wilson
,
P. A.
, and
Peters
,
A. J.
,
2002
, “
An Investigation Into Wing in Ground Effect Airfoil Geometry
,”
RTO SCI Symposium on Challenges in Dynamics, System Identification, Control and Handling Qualities for Land, Air, Sea and Space Vehicles
,
Berlin, Germany
, May 2002.
28.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
29.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,”
ANSYS Germany GmbH
, Germany.
30.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
0780011
.10.1115/1.2960953
31.
Richardson
,
L. F.
,
1910
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
, pp.
307
357
.10.1098/rsta.1911.0009
32.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
299
361
.10.1098/rsta.1927.0008
33.
ANSYS Inc.
,
2013
, “
ANSYS FLUENT Theory Guide
,” Release 18.2, Vol.
15317
,
ANSYS,
Canonsburg, PA, pp.
373
464
.
34.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
35.
Balakumar
,
P.
,
2017
, “
Direct Numerical Simulation of Flows Over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers
,”
AIAA
Paper No. 2017-3978. 10.2514/6.2017-3978
36.
Zerihan
,
J.
,
2001
, “
An Investigation Into the Aerodynamics of Wings in Ground Effect
,” Ph.D. dissertation,
School of Engineering Sciences
,
University of Southampton, Southampton, UK
.
37.
Doig
,
G.
,
Barber
,
T. J.
, and
Neely
,
A. J.
,
2011
, “
The Influence of Compressibility on the Aerodynamics of an Inverted Wing in Ground Effect
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061102
.10.1115/1.4004084
38.
Chang
,
B.
,
Neill
,
M.
,
Issa
,
R.
, and
Miller
,
A.
,
2014
, “
Development of Wind Vortex Shedding Coefficients for a Multisided Cylinder Structure
,”
Wind Struct.
,
18
(
2
), pp.
181
194
.10.12989/was.2014.18.2.181
39.
Waqas
,
H.
,
Farooq
,
U.
,
Hassan
,
A.
,
Liu
,
D.
,
Noreen
,
S.
,
Makki
,
R.
,
Imran
,
M.
, and
Ali
,
M. R.
,
2023
, “
Numerical and Computational Simulation of Blood Flow on Hybrid Nanofluid With Heat Transfer Through a Stenotic Artery: Silver and Gold Nanoparticles
,”
Results Phys.
,
44
, p.
106152
.10.1016/j.rinp.2022.106152
40.
Li
,
Z.
,
Othman
,
H. A.
,
Alzubaidi
,
A. M.
,
Saad
,
H. A.
,
Zhang
,
Y.
,
Hu
,
C.
, and
Alghawli
,
A.
,
2022
, “
Heat Storage System for Air Conditioning Purpose Considering Melting in Existence of Nanoparticles
,”
J. Energy Storage
,
55
(
Part A
), p.
105408
.10.1016/j.est.2022.105408
41.
Abidi
,
A.
,
El-Shafay
,
A. S.
,
Degani
,
M.
,
Guedri
,
K.
,
Sajadi
,
S. M.
, and
Sharifpur
,
M.
,
2022
, “
Improving the Thermal-Hydraulic Performance of Parabolic Solar Collectors Using Absorber Tubes Equipped With Perforated Twisted Tape Containing Nanofluid
,”
Sustainable Energy Technol. Assess.
,
52
(
Part C
), p.
102099
.10.1016/j.seta.2022.102099
42.
Alqarni
,
M. M.
,
Ibrahim
,
M.
,
Assiri
,
T. A.
,
Saeed
,
T.
,
Mousa
,
A. A.
, and
Ali
,
V.
,
2023
, “
Two-Phase Simulation of a Shell and Tube Heat Exchanger Filled With Hybrid Nanofluid
,”
Eng. Anal. Boundary Elem.
,
146
, pp.
80
88
.10.1016/j.enganabound.2022.10.001
43.
El-Amin
,
M. F.
,
Al-Ghamdi
,
A.
,
Salama
,
A.
, and
Sun
,
S.
,
2015
, “
Numerical Simulation and Analysis of Confined Turbulent Buoyant Jet With Variable Source
,”
J. Hydrodyn., Ser. B
,
27
(
6
), pp.
955
968
.10.1016/S1001-6058(15)60558-3
44.
Chen
,
W.
,
Liu
,
Y.
,
Xu
,
F.
,
Li
,
H.
, and
Hu
,
H.
,
2014
, “
Suppression of Vortex Shedding From a Circular Cylinder by Using a Traveling Wave Wall
,”
AIAA
Paper No. 2014-0399.10.2514/6.2014-0399
45.
Hiramoto
,
R.
, and
Higuchi
,
H.
,
2003
, “
Vortex Shedding Behind a Nonparallel Pair of Circular Cylinders
,”
J. Fluids Struct.
,
18
(
1
), pp.
131
143
.10.1016/S0889-9746(03)00089-6
46.
Dipankar
,
A.
,
Sengupta
,
T. K.
, and
Talla
,
S. B.
,
2007
, “
Suppression of Vortex Shedding Behind a Circular Cylinder by Another Control Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
573
, pp.
171
190
.10.1017/S002211200600382X
47.
Mittal
,
S.
, and
Raghuvanshi
,
A.
,
2001
, “
Control of Vortex Shedding Behind Circular Cylinder for Flows at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
35
(
4
), pp.
421
447
.10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M
48.
Koca
,
K.
,
Genç
,
M. S.
,
Açıkel
,
H. H.
,
Çağdaş
,
M.
, and
Bodur
,
T. M.
,
2018
, “
Identification of Flow Phenomena Over NACA 4412 Wind Turbine Airfoil at Low Reynolds Numbers and Role of Laminar Separation Bubble on Flow Evolution
,”
Energy
,
144
, pp.
750
764
.10.1016/j.energy.2017.12.045
49.
Rahromostaqim
,
M.
,
Posa
,
A.
, and
Balaras
,
E.
,
2016
, “
Numerical Investigation of the Performance of Pitching Airfoils at High Amplitudes
,”
AIAA J.
,
54
(
8
), pp.
2221
2232
.10.2514/1.J054424
50.
Posa
,
A.
,
2021
, “
Secondary Flows in the Wake of a Vertical Axis Wind Turbine of Solidity 0.5 Working at a Tip Speed Ratio of 2.2
,”
J. Wind Eng. Ind. Aerodyn.
,
213
, p.
104621
.10.1016/j.jweia.2021.104621
51.
Kim
,
T. Y.
,
Lee
,
B. S.
,
Ku
,
Y. C.
,
Lee
,
D. H.
, and
Kohama
,
Y.
,
2006
, “
The Enhancement of Aerodynamic Characteristics on Bluff Bodies Near a Moving Ground
,”
JSME Int. J., Ser. B
,
49
(
3
), pp.
787
796
.10.1299/jsmeb.49.787
52.
Bimbato
,
A. M.
,
Alcântara Pereira
,
L. A.
, and
Hirata
,
M. H.
,
2011
, “
Study of the Vortex Shedding Flow Around a Body Near a Moving Ground
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
1
), pp.
7
17
.10.1016/j.jweia.2010.10.003
53.
Mulleners
,
K.
, and
Rütten
,
M.
,
2018
, “
Analysis of Intermittent Trailing-Edge Vortex Shedding Using Recurrence Plots
,”
AIAA J.
,
56
(
2
), pp.
571
580
.10.2514/1.J056329
You do not currently have access to this content.