Abstract

The study investigates the influence of the Casson fluid parameter and the spanwise uniform magnetic field on the onset of instability against infinitesimal disturbances in an electrically conducting fluid flow between two parallel nonconducting rigid plates. The fourth-order linearized disturbance equation governing stability is solved using the spectral collocation method with Chebyshev-based polynomials. The aim is to analyze in detail the effect of the parameters involved in the problem using both modal and nonmodal linear stability analysis. The modal analysis provides accurate values of the critical Reynolds number, critical wave number, and critical wave speed, denoted as critical triplets (Rc, αc, cc). Additionally, it examines the eigen-spectrum, growth rate curves, and neutral stability curves. On the other hand, the nonmodal analysis investigates the transient energy growth G(t) of two-dimensional (2D) optimal perturbations, the pseudospectrum of the non-normal Orr–Sommerfeld (O–S) operator (), and the regions of stability, instability, and potential instability of the fluid flow system. The extensive examination of both long-term behavior through modal analysis and short-term behavior through nonmodal analysis reveals that the Hartmann number (Ha) acts as a stabilizing agent, delaying the onset of instability. Conversely, the Casson parameter (η) acts as a destabilizing agent, advancing the onset of instability. The results obtained here are verified to be in good agreement with the existing literature in the absence of the Casson fluid flow parameter.

References

1.
Drazin
,
P. G.
,
2002
,
Introduction to Hydrodynamic Stability
,
Cambridge University Press
, Cambridge, UK.
2.
Tritton
,
D. J.
,
1977
,
Physical Fluid Dynamics
,
Springer Netherlands
,
Dordrecht
.
3.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
, Cambridge, UK.
4.
Howard
,
L. N.
,
1962
, “
Hydrodynamic and Hydromagnetic Stability
,”
J. Fluid Mech.
,
13
(
1
), pp.
158
160
.10.1017/S0022112062210592
5.
Takashima
,
M.
,
1996
, “
The Stability of the Modified Plane Poiseuille Flow in the Presence of a Transverse Magnetic Field
,”
Fluid Dyn. Res.
,
17
(
6
), pp.
293
310
.10.1016/0169-5983(95)00038-0
6.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.10.1017/S0022112071002842
7.
Nishioka
,
M.
,
A
,
S. I.
, and
Ichikawa
,
Y.
,
1975
, “
An Experimental Investigation of the Stability of Plane Poiseuille Flow
,”
J. Fluid Mech.
,
72
(
4
), pp.
731
751
.10.1017/S0022112075003254
8.
Avila
,
K.
,
Moxey
,
D.
,
de Lozar
,
A.
,
Avila
,
M.
,
Barkley
,
D.
, and
Hof
,
B.
,
2011
, “
The Onset of Turbulence in Pipe Flow
,”
Science (1979)
,
333
(
6039
), pp.
192
196
.10.1126/science.1203223
9.
Butler
,
K. M.
, and
Farrell
,
B. F.
,
1992
, “
Three-Dimensional Optimal Perturbations in Viscous Shear Flow
,”
Phys. Fluids A Fluid Dyn.
,
4
(
8
), pp.
1637
1650
.10.1063/1.858386
10.
Gustavsson
,
L. H.
,
1991
, “
Energy Growth of Three-Dimensional Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
224
, pp.
241
260
.10.1017/S002211209100174X
11.
Reddy
,
S. C.
, and
Henningson
,
D. S.
,
1993
, “
Energy Growth in Viscous Channel Flows
,”
J. Fluid Mech.
,
252
, pp.
209
238
.10.1017/S0022112093003738
12.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
,
1993
, “
Hydrodynamic Stability Without Eigenvalues
,”
Science (1979)
,
261
(
5121
), pp.
578
584
.10.1126/science.261.5121.578
13.
Kerswell
,
R. R.
,
2018
, “
Nonlinear Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
319
345
.10.1146/annurev-fluid-122316-045042
14.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.10.1146/annurev.fluid.38.050304.092139
15.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
, and
Aziz
,
A.
,
2011
, “
Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate
,”
Heat Transfer-Asian Res.
,
40
(
6
), pp.
563
576
.10.1002/htj.20358
16.
Bhattacharyya
,
K.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2013
, “
Analytic Solution for Magnetohydrodynamic Boundary Layer Flow of Casson Fluid Over a Stretching/Shrinking Sheet With Wall Mass Transfer
,”
Chin. Phys. B
,
22
(
2
), p.
024702
.10.1088/1674-1056/22/2/024702
17.
Nadeem
,
S.
,
Ul Haq
,
R.
, and
Lee
,
C.
,
2012
, “
MHD Flow of a Casson Fluid Over an Exponentially Shrinking Sheet
,”
Sci. Iran.
,
19
(
6
), pp.
1550
1553
.10.1016/j.scient.2012.10.021
18.
Boyd
,
J.
,
Buick
,
J. M.
, and
Green
,
S.
,
2007
, “
Analysis of the Casson and Carreau-Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flows Using the Lattice Boltzmann Method
,”
Phys. Fluids
,
19
(
9
), p.
093103
.10.1063/1.2772250
19.
Kandasamy
,
A.
, and
Pai
,
R. G.
,
2011
, “
Entrance Region Flow of Casson Fluid in a Circular Tube
,”
Appl. Mech. Mater.
,
110-116
, pp.
698
706
.10.4028/www.scientific.net/AMM.110-116.698
20.
Asogwa
,
K. K.
, and
Ibe
,
A. A.
,
2020
, “
A Study of MHD Casson Fluid Flow Over a Permeable Stretching Sheet With Heat and Mass Transfer
,”
J. Eng. Res. Rep.
,
16
(
2
), pp.
10
25
.10.9734/jerr/2020/v16i217161
21.
Xu
,
L.
, and
Zhang
,
Y.
,
2022
, “
Adjoint Analysis of Plane Poiseuille Flow Global and Convective Stability
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111301
.10.1115/1.4054958
22.
Xu
,
L.
, and
Rusak
,
Z.
,
2022
, “
The Stability of Plane Poiseuille Flow in a Finite-Length Channel
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051302
.10.1115/1.4052643
23.
Kudenatti
,
R. B.
, and
Noor-E-Misbah
,
2023
, “
The Onset of Instability in a Hydromagnetic Channel Flow of Casson Fluid: The Accurate Solutions
,”
Appl. Math. Comput.
,
436
, p.
127475
.10.1016/j.amc.2022.127475
24.
Ghosh
,
S.
,
Loiseau
,
J.-C.
,
Breugem
,
W.-P.
, and
Brandt
,
L.
,
2019
, “
Modal and Non-Modal Linear Stability of Poiseuille Flow Through a Channel With a Porous Substrate
,”
Eur. J. Mech. B/Fluids
,
75
(, pp.
29
43
.10.1016/j.euromechflu.2018.11.013
25.
Hill
,
R. W.
, and
Ball
,
K. S.
,
1997
, “
Chebyshev Collocation Analysis of Axisymmetric Flow and Heat Transfer Between Counter-Rotating Disks
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
940
947
.10.1115/1.2819521
26.
Oluwadare
,
B. S.
, and
He
,
S.
,
2023
, “
Experimental Study of Turbulence Response in a Slowly Accelerating Turbulent Channel Flow
,”
ASME J. Fluids Eng.
,
145
(
8
), p.
081302
.10.1115/1.4062166
27.
Samanta
,
A.
,
2020
, “
Non-Modal Stability Analysis in Viscous Fluid Flows With Slippery Walls
,”
Phys. Fluids
,
32
(
6
), p.
064105
.10.1063/5.0010016
28.
Simpson
,
J. P.
, and
Leylek
,
J. H.
,
2023
, “
The Influence of Womersley Number on Non-Newtonian Effects: Transient Computational Study of Blood Rheology
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011206
.10.1115/1.4055400
29.
Nouar
,
C.
,
Kabouya
,
N.
,
Dusek
,
J.
, and
Mamou
,
M.
,
2007
, “
Modal and Non-Modal Linear Stability of the Plane Bingham–Poiseuille Flow
,”
J. Fluid Mech.
,
577
, pp.
211
239
.10.1017/S0022112006004514
30.
Jotkar
,
M.
, and
Govindarajan
,
R.
,
2019
, “
Two-Dimensional Modal and Non-Modal Instabilities in Straight-Diverging-Straight Channel Flow
,”
Phys. Fluids
,
31
(
1
), p.
014102
.10.1063/1.5055053
31.
Zhang
,
M.
,
Martinelli
,
F.
,
Wu
,
J.
,
Schmid
,
P. J.
, and
Quadrio
,
M.
,
2015
, “
Modal and Non-Modal Stability Analysis of Electrohydrodynamic Flow With and Without Cross-Flow
,”
J. Fluid Mech.
,
770
, pp.
319
349
.10.1017/jfm.2015.134
32.
Benyza
,
J.
,
Lamine
,
M.
, and
Hifdi
,
A.
,
2019
, “
Transient Energy Growth of Channel Flow With Cross-Flow
,”
MATEC Web Conf.
,
286
, p.
07008
.10.1051/matecconf/201928607008
33.
Chen
,
C.
,
Huang
,
J.-T.
, and
Zhang
,
W.-G.
,
2021
, “
Optimal Perturbations in Viscous Channel Flow With Crossflow
,”
Fluid Dyn. Res.
,
53
(
2
), p.
025502
.10.1088/1873-7005/abefb7
34.
Fusi
,
L.
,
Farina
,
A.
,
Rajagopal
,
K. R.
, and
Vergori
,
L.
,
2022
, “
Channel Flows of Shear-Thinning Fluids That Mimic the Mechanical Response of a Bingham Fluid
,”
Int. J. Non Linear Mech.
,
138
, p.
103847
.10.1016/j.ijnonlinmec.2021.103847
35.
Nawaz
,
M.
,
Naz
,
R.
, and
Awais
,
M.
,
2018
, “
Magnetohydrodynamic Axisymmetric Flow of Casson Fluid With Variable Thermal Conductivity and Free Stream
,”
Alexandria Eng. J.
,
57
(
3
), pp.
2043
2050
.10.1016/j.aej.2017.05.016
36.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1993
, “
Pseudospectra of the Orr–Sommerfeld Operator
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
15
47
.10.1137/0153002
37.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1994
, “
Optimal Energy Density Growth in Hagen–Poiseuille Flow
,”
J. Fluid Mech.
,
277
, pp.
197
225
.10.1017/S0022112094002739
38.
Thomas
,
L. H.
,
1953
, “
The Stability of Plane Poiseuille Flow
,”
Phys. Rev.
,
91
(
4
), pp.
780
783
.10.1103/PhysRev.91.780
39.
Grosch
,
C. E.
, and
Salwen
,
H.
,
1968
, “
The Stability of Steady and Time-Dependent Plane Poiseuille Flow
,”
J. Fluid Mech.
,
34
(
1
), pp.
177
205
.10.1017/S0022112068001837
40.
Gary
,
J.
, and
Helgason
,
R.
,
1970
, “
A Matrix Method for Ordinary Differential Eigenvalue Problems
,”
J. Comput. Phys.
,
5
(
2
), pp.
169
187
.10.1016/0021-9991(70)90058-6
41.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2020
, “
Stability of Porous-Poiseuille Flow With Uniform Vertical Throughflow: High Accurate Solution
,”
Phys. Fluids
,
32
(
4
), p.
044101
.10.1063/1.5143170
42.
Moler
,
C. B.
, and
Stewart
,
G. W.
,
1973
, “
An Algorithm for Generalized Matrix Eigenvalue Problems
,”
SIAM J. Numer. Anal.
,
10
(
2
), pp.
241
256
.10.1137/0710024
43.
Chock
,
D. P.
, and
Schechter
,
R. S.
,
1973
, “
Critical Reynolds Number of the Orr-Sommerfeld Equation
,”
Phys. Fluids
,
16
(
2
), pp.
329
330
.10.1063/1.1694337
44.
Makinde
,
O. D.
,
2009
, “
On the Chebyshev Collocation Spectral Approach to Stability of Fluid Flow in a Porous Medium
,”
Int. J. Numer .Methods Fluids
,
59
(
7
), pp.
791
799
.10.1002/fld.1847
45.
Mack
,
L. M.
,
1976
, “
A Numerical Study of the Temporal Eigenvalue Spectrum of the Blasius Boundary Layer
,”
J. Fluid Mech.
,
73
(
3
), pp.
497
520
.10.1017/S002211207600147X
You do not currently have access to this content.