Abstract

In cycling races, overtaking is a crucial maneuver that involves drafting behind and moving to the side of another cyclist. The flow interaction between the cyclists has a very significant impact on the aerodynamic performance. Previous experimental and numerical studies have shown the aerodynamic drag changes at certain relative positions between cyclists. This study aims at providing a comprehensive aerodynamic power contour along a complete overtaking path, detailing the power at different relative positions to develop efficient overtaking strategies. The aerodynamic results are obtained with numerical simulations, the accuracy of which is validated against wind tunnel experiments. Improved sampling and data-fitting approaches are employed to enhance previous findings. The results show that starting the overtaking maneuver closest to the leading cyclist and overtaking with a larger lateral separation is the most aerodynamically efficient strategy. These findings provide valuable insights into developing optimal overtaking strategies in competitive cycling races.

References

1.
Grappe
,
F.
,
Candau
,
R.
,
Belli
,
A.
, and
Rouillon
,
J. D.
,
1997
, “
Aerodynamic Drag in Field Cycling With Special Reference to the Obree's Position
,”
Ergonomics
,
40
(
12
), pp.
1299
1311
.10.1080/001401397187388
2.
Lukes
,
R. A.
,
Chin
,
S. B.
, and
Haake
,
S. J.
,
2005
, “
The Understanding and Development of Cycling Aerodynamics
,”
Sports Eng.
,
8
(
2
), pp.
59
74
.10.1007/BF02844004
3.
Malizia
,
F.
, and
Blocken
,
B.
,
2021
, “
Cyclist Aerodynamics Through Time: Better, Faster, Stronger
,”
J. Wind Eng. Ind. Aerodyn.
,
214
, p.
104673
.10.1016/j.jweia.2021.104673
4.
García-López
,
J.
,
Rodríguez-Marroyo
,
J. A.
,
Juneau
,
C.-E.
,
Peleteiro
,
J.
,
Martínez
,
A. C.
, and
Villa
,
J. G.
,
2008
, “
Reference Values and Improvement of Aerodynamic Drag in Professional Cyclists
,”
J. Sports Sci.
,
26
(
3
), pp.
277
286
.10.1080/02640410701501697
5.
Crouch
,
T. N.
,
Burton
,
D.
,
Brown
,
N. A. T.
,
Thompson
,
M. C.
, and
Sheridan
,
J.
,
2014
, “
Flow Topology in the Wake of a Cyclist and Its Effect on Aerodynamic Drag
,”
J. Fluid Mech.
,
748
, pp.
5
35
.10.1017/jfm.2013.678
6.
Barry
,
N.
,
Burton
,
D.
,
Sheridan
,
J.
,
Thompson
,
M.
, and
Brown
,
N. A.
,
2015
, “
Aerodynamic Performance and Riding Posture in Road Cycling and Triathlon
,”
Proc. Inst. Mech. Eng., Part P
,
229
(
1
), pp.
28
38
.10.1177/1754337114549876
7.
Crouch
,
T. N.
,
Burton
,
D.
,
Thompson
,
M. C.
,
Brown
,
N. A.
, and
Sheridan
,
J.
,
2016
, “
Dynamic Leg-Motion and Its Effect on the Aerodynamic Performance of Cyclists
,”
J. Fluids Struct.
,
65
, pp.
121
137
.10.1016/j.jfluidstructs.2016.05.007
8.
Griffith
,
M. D.
,
Crouch
,
T. N.
,
Burton
,
D.
,
Sheridan
,
J.
,
Brown
,
N. A.
, and
Thompson
,
M. C.
,
2019
, “
A Numerical Model for the Time-Dependent Wake of a Pedalling Cyclist
,”
Proc. Inst. Mech. Eng., Part P
,
233
(
4
), pp.
514
525
.10.1177/1754337119858434
9.
Terra
,
W.
,
Sciacchitano
,
A.
, and
Shah
,
Y. H.
,
2019
, “
Aerodynamic Drag Determination of a Full-Scale Cyclist Mannequin From Large-Scale PTV Measurements
,”
Exp. Fluids
,
60
(
2
), p.
29
.10.1007/s00348-019-2677-6
10.
Barry
,
N.
,
Sheridan
,
J.
,
Burton
,
D.
, and
Brown
,
N. A.
,
2014
, “
The Effect of Spatial Position on the Aerodynamic Interactions Between Cyclists
,”
Procedia Eng.
,
72
, pp.
774
779
.10.1016/j.proeng.2014.06.131
11.
Belloli
,
M.
,
Giappino
,
S.
,
Robustelli
,
F.
, and
Somaschini
,
C.
,
2016
, “
Drafting Effect in Cycling: Investigation by Wind Tunnel Tests
,”
Procedia Eng.
,
147
, pp.
38
43
.10.1016/j.proeng.2016.06.186
12.
Spoelstra
,
A.
,
Mahalingesh
,
N.
, and
Sciacchitano
,
A.
,
2020
, “
Drafting Effect in Cycling: On-Site Aerodynamic Investigation by the ‘Ring of Fire
,”
Proceedings
,
49
(
1
), p.
113
.10.3390/proceedings2020049113
13.
Blocken
,
B.
,
Defraeye
,
T.
,
Koninckx
,
E.
,
Carmeliet
,
J.
, and
Hespel
,
P.
,
2013
, “
CFD Simulations of the Aerodynamic Drag of Two Drafting Cyclists
,”
Comput. Fluids
,
71
, pp.
435
445
.10.1016/j.compfluid.2012.11.012
14.
Oggiano
,
L.
,
Spurkland
,
L.
,
Sætran
,
L.
, and
Bardal
,
L. M.
,
2016
, “
Aerodynamical Resistance in Cycling on a Single Rider and on Two Drafting Riders: CFD Simulations, Validation and Comparison With Wind Tunnel Tests
,”
Sports Science Research and Technology Support: Third International Congress, icSPORTS 2015
, Lisbon, Portugal, Nov. 15-17, Revised Selected Papers 3, pp.
22
37
.
15.
van Druenen
,
T.
, and
Blocken
,
B.
,
2021
, “
Aerodynamic Analysis of Uphill Drafting in Cycling
,”
Sports Eng.
,
24
(
1
), p.
10
.10.1007/s12283-021-00345-2
16.
Blocken
,
B.
,
Gillmeier
,
S.
,
Malizia
,
F.
, and
van Druenen
,
T.
,
2021
, “
Impact of a Motorcycle on Cyclist Aerodynamic Drag in Parallel and Staggered Arrangements
,”
Sports Eng.
,
24
(
1
), p.
7
.10.1007/s12283-021-00344-3
17.
Blocken
,
B.
,
Toparlar
,
Y.
,
van Druenen
,
T.
, and
Andrianne
,
T.
,
2018
, “
Aerodynamic Drag in Cycling Team Time Trials
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
128
145
.10.1016/j.jweia.2018.09.015
18.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper
1992
439
.10.2514/6.1992-439
19.
Godo
,
M.
,
Corson
,
D.
, and
Legensky
,
S.
,
2009
, “
An Aerodynamic Study of Bicycle Wheel Performance Using CFD
,” AIAA Paper 2009-322.10.2514/6.2009-322
20.
Godo
,
M.
,
Corson
,
D.
, and
Legensky
,
S.
,
2010
, “
A Comparative Aerodynamic Study of Commercial Bicycle Wheels Using CFD
,”
AIAA
Paper
2010
1431
.10.2514/6.2010-1431
21.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the “Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
22.
Caretto
,
L. S.
,
Gosman
,
A. D.
,
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1973
, “
Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation
,”
Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics: Vol. II Problems of Fluid Mechanics
, pp.
60
68
.https://link.springer.com/chapter/10.1007/BFb0112677
23.
Malizia
,
F.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
CFD Simulations of Spoked Wheel Aerodynamics in Cycling: Impact of Computational Parameters
,”
J. Wind Eng. Ind. Aerodyn.
,
194
, p.
103988
.10.1016/j.jweia.2019.103988
24.
Malizia
,
F.
, and
Blocken
,
B.
,
2023
, “
Impact of Disc Wheel Geometry on Aerodynamic Performance: A CFD Investigation
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011209
.10.1115/1.4055698
25.
Yi
,
W.
,
Bertin
,
C.
,
Zhou
,
P.
,
Mao
,
J.
,
Zhong
,
S.
, and
Zhang
,
X.
,
2022
, “
Aerodynamics of Isolated Cycling Wheels Using Wind Tunnel Tests and Computational Fluid Dynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
228
, p.
105085
.10.1016/j.jweia.2022.105085
26.
Van Druenen
,
T.
, and
Blocken
,
B.
,
2023
, “
Aerodynamic Impact of Cycling Postures on Drafting in Single Paceline Configurations
,”
Comput. Fluids
,
257
, p.
105863
.10.1016/j.compfluid.2023.105863
27.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), p.
239
.10.2307/1268522
28.
Duchon
,
J.
,
1977
, “
Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces
,”
Constructive Theory of Functions of Several Variables: Proceedings of a Conference Held at Oberwolfach
, Apr. 25–May 1, pp.
85
100
.
29.
Benini
,
E.
, and
Ponza
,
R.
,
2010
, “
Nonparametric Fitting of Aerodynamic Data Using Smoothing Thin-Plate Splines
,”
AIAA J.
,
48
(
7
), pp.
1403
1419
.10.2514/1.J050028
You do not currently have access to this content.