Abstract

A thrust bearing is a type of rotary bearing that permits rotation between parts and is designed to support a load parallel to the axis of rotation. There is a temperature drop region with the increase in speed. However, previous researchers mainly showed such temperature drop experimentally, and the physics causing such temperature drop is not understood. A full fluid–solid computational fluid dynamics (CFD) model was developed for a center pivot, tilting pad, and fluid-film thrust-bearing experimental model to study the physics of temperature drop in the transitional region. A novel physics of causing temperature drop in the transitional region was proposed, analyzed, and verified.

References

1.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Fittro
,
R.
, and
Wood
,
H.
,
2019
, “
Response Surface Mapping and Multi-Objective Optimization of Crowning and Tapers in Water-Lubricated Thrust Bearings
,”
ASME
Paper No. GT2019-91984.10.1115/GT2019-91984
2.
Deng
,
X.
,
Weaver
,
B.
,
Watson
,
C.
,
Branagan
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
,
2018
, “
Modeling Reichardt's Formula for Eddy Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082505
.10.1115/1.4038857
3.
Deng
,
X.
,
Gates
,
H.
,
Fittro
,
R.
, and
Wood
,
H.
,
2019
, “
Methodology of Turbulence Parameter Correction in Water-Lubricated Thrust Bearings
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071104
.10.1115/1.4042161
4.
Tang
,
D.
,
Xiang
,
G.
,
Guo
,
J.
,
Cai
,
J.
,
Yang
,
T.
,
Wang
,
J.
, and
Han
,
Y.
,
2023
, “
On the Optimal Design of Staved Water-Lubricated Bearings Driven by Tribo-Dynamic Mechanism
,”
Phys. Fluids
,
35
(
9
), p.
093611
.10.1063/5.0165807
5.
Xiang
,
G.
,
Yang
,
T.
,
Guo
,
J.
,
Wang
,
J.
,
Liu
,
B.
, and
Chen
,
S.
,
2022
, “
Optimization Transient Wear and Contact Performances of Water-Lubricated Bearings Under Fluid-Solid-Thermal Coupling Condition Using Profile Modification
,”
Wear
,
502–503
, p.
204379
.10.1016/j.wear.2022.204379
6.
Deng
,
X.
,
Gates
,
H.
,
Weaver
,
B.
,
Wood
,
H.
, and
Fittro
,
R.
,
2018
, “
Turbulence Input Parameters Correction Methodology in Water Lubricated Thrust Bearings
,” ASME Paper No. GT2018-7559710.1115/GT2018-75597.
7.
Ettles
,
C.
,
1969
, “
Hot Oil Carry-Over in Thrust Bearings
,”
Proc. Inst. Mech. Eng.
,
184
(
12
), pp.
75
81
.10.1243/PIME_CONF_1969_184_373_02
8.
Dousti
,
S.
,
Allaire
,
P.
,
Cao
,
J.
,
Nichols
,
B.
, and
Dimond
,
T.
,
2019
, “
A Numerical Thermohydrodynamic Study of Fixed Pad Oil Lubricated Thrust Bearings
,”
ASME
Paper No. GT2019-91596.10.1115/GT2019-91596
9.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021701
.10.1115/1.4041211
10.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
,
1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearing
,”
ASME J. Tribol.
,
105
(
3
), pp.
414
420
.10.1115/1.3254629
11.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
,
1986
, “
An Experimental Investigation on the Temperature Distribution in Circular Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
621
626
.10.1115/1.3261285
12.
Mikula
,
A. M.
,
1985
, “
The Leading-Edge-Groove Tilting-Pad Thrust Bearing: Recent Developments
,”
ASME J. Tribol.
,
107
(
3
), pp.
423
428
.10.1115/1.3261099
13.
Gregory
,
R. S.
,
1974
, “
Performance of Thrust Bearings at High Operating Speeds
,”
ASME J. Tribol.
,
96
(
1
), pp.
7
13
.10.1115/1.3451918
14.
Capitao
,
J. W.
,
Gregory
,
R. S.
, and
Whitford
,
R. P.
,
1976
, “
Effects of High-Operating Speeds on Tilting Pad Thrust Bearing Performance
,”
ASME J. Tribol.
,
98
(
1
), pp.
73
79
.10.1115/1.3452779
15.
Deng
,
X.
,
2024
, “
A Mixed Zero-Equation and One-Equation Turbulence Model in Fluid-Film Thrust Bearings
,”
ASME J. Tribol.
,
146
(
3
), p.
034101
.10.1115/1.4063945
16.
Capitao
,
J. W.
,
1974
, “
Influence of Turbulence on Performance Characteristics of the Tilting Pad Thrust Bearing
,”
ASME J. Tribol.
,
96
(
1
), pp.
110
116
.10.1115/1.3451879
17.
Capitao
,
J. W.
,
1976
, “
Performance Characteristics of Tilting Pad Thrust Bearings at High Operating Speeds
,”
ASME J. Tribol.
,
98
(
1
), pp.
81
88
.10.1115/1.3452783
18.
Guo
,
J.
,
Ding
,
B.
,
Wang
,
Y.
, and
Han
Y.
,
2013
, “
Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation
,”
Phys. Scripta
,
98
(
12
), p.
125218
.10.1088/1402-4896/ad07be
19.
Yang
,
T.
,
Xiang
,
G.
,
Cai
,
J.
,
Wang
,
L.
,
Lin
,
X.
,
Wang
,
J.
, and
Zhou
,
G.
,
2024
, “
Five-DOF Nonlinear Tribo-Dynamic Analysis for Coupled Bearings During Start-Up
,”
Int. J. Mech. Sci.
,
269
, p.
109068
.10.1016/j.ijmecsci.2024.109068
20.
Tang
,
D.
,
Xiao
,
K.
,
Xiang
,
G.
,
Cai
,
J.
,
Fillon
,
M.
,
Wang
,
D.
, and
Su
,
Z.
,
2024
, “
On the Nonlinear Time-Varying Mixed Lubrication for Coupled Spiral Microgroove Water-Lubricated Bearings With Mass Conservation Cavitation
,”
Tribol. Int.
,
193
, p.
109381
.10.1016/j.triboint.2024.109381
21.
Kosasih
,
P. B.
, and
Tieu
,
A. K.
,
1993
, “
An Analysis of Sector-Shaped Thrust Bearings Operating in the Transition Regime
,”
Wear
,
160
(
2
), pp.
291
299
.10.1016/0043-1648(93)90433-M
22.
Deng
,
X.
,
Watson
,
C.
,
Weaver
,
B.
,
Wood
,
H.
, and
Fittro
,
R.
,
2017
, “
Lubricant Inertia in Water Lubricated Bearings
,”
ASME
Paper No. FEDSM2017-69110.10.1115/FEDSM2017-69110
23.
Deng
,
X.
,
Weaver
,
B.
,
Watson
,
C.
,
Branagan
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
,
2017
, “
Modeling Reichardt's Formula for Eddy-Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
,”
ASME
Paper No. GTP-17-161410.1115/GTP-17-1614.
24.
Bouard
,
L.
,
Fillon
,
M.
, and
Frene
,
J.
,
1996
, “
Thermohydrodynamic Analysis of Tilting-Pad Journal Bearings Operating in Turbulent Flow Regime
,”
ASME Tribol. Int.
,
118
(
1
), pp.
225
231
.10.1115/1.2837083
25.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
.10.1016/j.triboint.2019.03.035
26.
Frene
,
J.
,
1978
, “
Tapered Land Thrust Bearing Operating in Both Laminar and Turbulent Regimes
,”
ASLE Trans.
,
3
(
21
), pp.
243
249
.10.1080/05698197808982881
27.
Frene
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
,
1997
,
Hydrodynamic Lubrication: Bearings and Thrust Bearings
,
Editions Eyrolles, Paris, France
.
28.
He
,
M.
, and
Allaire
,
P.
,
2003
,
Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings
,
University of Virginia
,
Charlottesville, VA
.
29.
Fillon
,
M.
, and
Glavatskih
,
S. B.
,
2008
, “
PTFE-Faced Centre Pivot Thrust Pad Bearings: Factors Affecting TEHD Performance
,”
Tribol. Int.
,
41
(
12
), pp.
1219
1225
.10.1016/j.triboint.2008.03.011
30.
Ball
,
J. H.
,
1996
, “
Design Considerations for Thrust Bearing Applications
,”
Proceedings of the 25th Turbomachinery Symposium
, Houston, Texas, Sept. 17–19, pp.
223
242
.https://core.ac.uk/download/pdf/147258999.pdf
31.
Gardner
,
W. W.
,
1988
, “
Tilting Pad Thrust Bearing Tests—Influence of Pivot Location
,”
ASME J. Tribol.
,
110
(
4
), pp.
609
613
.10.1115/1.3261701
32.
Collins
,
M. C.
,
2020
,
Validation and Uncertainty Quantification of CFD Smooth Seal Models: ANSYS and Bulk-Flow
,
University of Virginia
,
Charlottesville, VA
.
33.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
,
2018
, “
Comparison of Experimental, Thermoelastohydrodynamic (TEHD) and Isothermal, Non-Deforming Computational Fluid Dynamics (CFD) Results for Thrust Bearings
,”
ASME
Paper No. FEDSM2018-83177.10.1115/FEDSM2018-83177
34.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Fittro
,
R.
, and
Wood
,
H.
,
2018
, “
Comparison of Experimental, Thermoelastohydrodynamic (TEHD) and Thermal, Non-Deforming Computational Fluid Dynamics (CFD) Results for Thrust Bearings: Part II
,”
ASME
Paper No. IMECE2018-8779810.1115/IMECE2018-87798.
35.
Pajączkowski
,
P.
,
Schubert
,
A.
,
Wasilczuk
,
M.
, and
Wodtke
,
M.
,
2014
, “
Simulation of large thrust-bearing performance at transient states, warm and cold start-up
,”
Proc. Inst. Mech. Eng., Part J.
,
228
(
1
), pp.
96
103
.10.1177/1350650113500483
You do not currently have access to this content.