Issue Section:
Flows in Complex Systems
Abstract
A thrust bearing is a type of rotary bearing that permits rotation between parts and is designed to support a load parallel to the axis of rotation. There is a temperature drop region with the increase in speed. However, previous researchers mainly showed such temperature drop experimentally, and the physics causing such temperature drop is not understood. A full fluid–solid computational fluid dynamics (CFD) model was developed for a center pivot, tilting pad, and fluid-film thrust-bearing experimental model to study the physics of temperature drop in the transitional region. A novel physics of causing temperature drop in the transitional region was proposed, analyzed, and verified.
Issue Section:
Flows in Complex Systems
References
1.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Fittro
,
R.
, and
Wood
,
H.
, 2019
, “
Response Surface Mapping and Multi-Objective Optimization of Crowning and Tapers in Water-Lubricated Thrust Bearings
,” ASME
Paper No. GT2019-91984.10.1115/GT2019-919842.
Deng
,
X.
,
Weaver
,
B.
,
Watson
,
C.
,
Branagan
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
, 2018
, “
Modeling Reichardt's Formula for Eddy Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
,” ASME J. Eng. Gas Turbines Power
,
140
(8
), p. 082505
.10.1115/1.40388573.
Deng
,
X.
,
Gates
,
H.
,
Fittro
,
R.
, and
Wood
,
H.
, 2019
, “
Methodology of Turbulence Parameter Correction in Water-Lubricated Thrust Bearings
,” ASME J. Fluids Eng.
,
141
(7
), p. 071104
.10.1115/1.40421614.
Tang
,
D.
,
Xiang
,
G.
,
Guo
,
J.
,
Cai
,
J.
,
Yang
,
T.
,
Wang
,
J.
, and
Han
,
Y.
, 2023
, “
On the Optimal Design of Staved Water-Lubricated Bearings Driven by Tribo-Dynamic Mechanism
,” Phys. Fluids
,
35
(9
), p. 093611
.10.1063/5.01658075.
Xiang
,
G.
,
Yang
,
T.
,
Guo
,
J.
,
Wang
,
J.
,
Liu
,
B.
, and
Chen
,
S.
, 2022
, “
Optimization Transient Wear and Contact Performances of Water-Lubricated Bearings Under Fluid-Solid-Thermal Coupling Condition Using Profile Modification
,” Wear
,
502–503
, p. 204379
.10.1016/j.wear.2022.2043796.
Deng
,
X.
,
Gates
,
H.
,
Weaver
,
B.
,
Wood
,
H.
, and
Fittro
,
R.
, 2018
, “
Turbulence Input Parameters Correction Methodology in Water Lubricated Thrust Bearings
,” ASME Paper No. GT2018-7559710.1115/GT2018-75597.7.
Ettles
,
C.
, 1969
, “
Hot Oil Carry-Over in Thrust Bearings
,” Proc. Inst. Mech. Eng.
,
184
(12
), pp. 75
–81
.10.1243/PIME_CONF_1969_184_373_028.
Dousti
,
S.
,
Allaire
,
P.
,
Cao
,
J.
,
Nichols
,
B.
, and
Dimond
,
T.
, 2019
, “
A Numerical Thermohydrodynamic Study of Fixed Pad Oil Lubricated Thrust Bearings
,” ASME
Paper No. GT2019-91596.10.1115/GT2019-915969.
Hagemann
,
T.
, and
Schwarze
,
H.
, 2019
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,” ASME J. Tribol.
,
141
(2
), p. 021701
.10.1115/1.404121110.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
, 1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearing
,” ASME J. Tribol.
,
105
(3
), pp. 414
–420
.10.1115/1.325462911.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
, 1986
, “
An Experimental Investigation on the Temperature Distribution in Circular Journal Bearings
,” ASME J. Tribol.
,
108
(4
), pp. 621
–626
.10.1115/1.326128512.
Mikula
,
A. M.
, 1985
, “
The Leading-Edge-Groove Tilting-Pad Thrust Bearing: Recent Developments
,” ASME J. Tribol.
,
107
(3
), pp. 423
–428
.10.1115/1.326109913.
Gregory
,
R. S.
, 1974
, “
Performance of Thrust Bearings at High Operating Speeds
,” ASME J. Tribol.
,
96
(1
), pp. 7
–13
.10.1115/1.345191814.
Capitao
,
J. W.
,
Gregory
,
R. S.
, and
Whitford
,
R. P.
, 1976
, “
Effects of High-Operating Speeds on Tilting Pad Thrust Bearing Performance
,” ASME J. Tribol.
,
98
(1
), pp. 73
–79
.10.1115/1.345277915.
Deng
,
X.
, 2024
, “
A Mixed Zero-Equation and One-Equation Turbulence Model in Fluid-Film Thrust Bearings
,” ASME J. Tribol.
,
146
(3
), p. 034101
.10.1115/1.406394516.
Capitao
,
J. W.
, 1974
, “
Influence of Turbulence on Performance Characteristics of the Tilting Pad Thrust Bearing
,” ASME J. Tribol.
,
96
(1
), pp. 110
–116
.10.1115/1.345187917.
Capitao
,
J. W.
, 1976
, “
Performance Characteristics of Tilting Pad Thrust Bearings at High Operating Speeds
,” ASME J. Tribol.
,
98
(1
), pp. 81
–88
.10.1115/1.345278318.
Guo
, J.
, Ding
, B.
, Wang
, Y.
, and Han
Y.
, 2013
, “Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation
,” Phys. Scripta
, 98
(12
), p. 125218
.10.1088/1402-4896/ad07be19.
Yang
,
T.
,
Xiang
,
G.
,
Cai
,
J.
,
Wang
,
L.
,
Lin
,
X.
,
Wang
,
J.
, and
Zhou
,
G.
, 2024
, “
Five-DOF Nonlinear Tribo-Dynamic Analysis for Coupled Bearings During Start-Up
,” Int. J. Mech. Sci.
,
269
, p. 109068
.10.1016/j.ijmecsci.2024.10906820.
Tang
,
D.
,
Xiao
,
K.
,
Xiang
,
G.
,
Cai
,
J.
,
Fillon
,
M.
,
Wang
,
D.
, and
Su
,
Z.
, 2024
, “
On the Nonlinear Time-Varying Mixed Lubrication for Coupled Spiral Microgroove Water-Lubricated Bearings With Mass Conservation Cavitation
,” Tribol. Int.
,
193
, p. 109381
.10.1016/j.triboint.2024.10938121.
Kosasih
,
P. B.
, and
Tieu
,
A. K.
, 1993
, “
An Analysis of Sector-Shaped Thrust Bearings Operating in the Transition Regime
,” Wear
,
160
(2
), pp. 291
–299
.10.1016/0043-1648(93)90433-M22.
Deng
,
X.
,
Watson
,
C.
,
Weaver
,
B.
,
Wood
,
H.
, and
Fittro
,
R.
, 2017
, “
Lubricant Inertia in Water Lubricated Bearings
,” ASME
Paper No. FEDSM2017-69110.10.1115/FEDSM2017-6911023.
Deng
,
X.
,
Weaver
,
B.
,
Watson
,
C.
,
Branagan
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
, 2017
, “
Modeling Reichardt's Formula for Eddy-Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
,” ASME
Paper No. GTP-17-161410.1115/GTP-17-1614.24.
Bouard
,
L.
,
Fillon
,
M.
, and
Frene
,
J.
, 1996
, “
Thermohydrodynamic Analysis of Tilting-Pad Journal Bearings Operating in Turbulent Flow Regime
,” ASME Tribol. Int.
,
118
(1
), pp. 225
–231
.10.1115/1.283708325.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
, 2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,” Tribol. Int.
,
136
, pp. 114
–126
.10.1016/j.triboint.2019.03.03526.
Frene
,
J.
, 1978
, “
Tapered Land Thrust Bearing Operating in Both Laminar and Turbulent Regimes
,” ASLE Trans.
,
3
(21
), pp. 243
–249
.10.1080/0569819780898288127.
Frene
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
, 1997
, Hydrodynamic Lubrication: Bearings and Thrust Bearings
,
Editions Eyrolles, Paris, France
.28.
He
,
M.
, and
Allaire
,
P.
, 2003
, Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings
,
University of Virginia
,
Charlottesville, VA
.29.
Fillon
,
M.
, and
Glavatskih
,
S. B.
, 2008
, “
PTFE-Faced Centre Pivot Thrust Pad Bearings: Factors Affecting TEHD Performance
,” Tribol. Int.
,
41
(12
), pp. 1219
–1225
.10.1016/j.triboint.2008.03.01130.
Ball
,
J. H.
, 1996
, “
Design Considerations for Thrust Bearing Applications
,” Proceedings of the 25th Turbomachinery Symposium
, Houston, Texas, Sept. 17–19, pp. 223
–242
.https://core.ac.uk/download/pdf/147258999.pdf31.
Gardner
,
W. W.
, 1988
, “
Tilting Pad Thrust Bearing Tests—Influence of Pivot Location
,” ASME J. Tribol.
,
110
(4
), pp. 609
–613
.10.1115/1.326170132.
Collins
,
M. C.
, 2020
, Validation and Uncertainty Quantification of CFD Smooth Seal Models: ANSYS and Bulk-Flow
,
University of Virginia
,
Charlottesville, VA
.33.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
, 2018
, “
Comparison of Experimental, Thermoelastohydrodynamic (TEHD) and Isothermal, Non-Deforming Computational Fluid Dynamics (CFD) Results for Thrust Bearings
,” ASME
Paper No. FEDSM2018-83177.10.1115/FEDSM2018-8317734.
Deng
,
X.
,
Watson
,
C.
,
He
,
M.
,
Fittro
,
R.
, and
Wood
,
H.
, 2018
, “
Comparison of Experimental, Thermoelastohydrodynamic (TEHD) and Thermal, Non-Deforming Computational Fluid Dynamics (CFD) Results for Thrust Bearings: Part II
,” ASME
Paper No. IMECE2018-8779810.1115/IMECE2018-87798.35.
Pajączkowski
, P.
, Schubert
, A.
, Wasilczuk
, M.
, and Wodtke
, M.
, 2014
, “Simulation of large thrust-bearing performance at transient states, warm and cold start-up
,” Proc. Inst. Mech. Eng., Part J.
, 228
(1
), pp. 96
–103
.10.1177/1350650113500483Copyright © 2024 by ASME
You do not currently have access to this content.