Abstract

A series of laboratory experiments was conducted to investigate the effects of impact energy and other initial controlling parameters on the motion of particle clouds in stagnant water. Experiments were performed for two median sand diameters of D50 = 0.52 mm and 0.74 mm and nozzle diameters of do = 6 mm and 8 mm. Sand masses were converted to an equivalent pipe length with the same diameter as the nozzle, Lo, and a wide range of aspect ratios, Lo/do, between 2 and 93 was tested. The impact energy of sand particles was controlled by the release height of sand particles, and it was quantified by the nondimensional release height, η, ranging from 1 to 21.5. It was found that particle clouds with higher impact energy had smaller concentration and velocity decay rates. This indicated that by increasing the release height, the momentum transfer between sand particles and the ambient water decreases. The time-series of instantaneous sand velocity were used to determine velocity fluctuations and turbulence intensity of sand particles, and a direct correlation was found between sand velocity fluctuations and aspect ratio in particle clouds. The effects of impact energy on the anatomy of the resulted particle clouds were examined in this study. It was found that the cloud width increased dramatically when the impact energy of sand particles with high aspect ratios (i.e., Lo/do > 39) increased. Furthermore, the dispersion of sand particle began earlier as the kinetic energy of sand particles increased at the water surface.

References

1.
Hall
,
N.
,
Elenany
,
M.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2010
, “
Experimental Study of Sand and Slurry Jets in Water
,”.
J. Hydraul. Eng. ASCE
,
136
(
10
), pp.
727
738
.10.1061/(ASCE)HY.1943-7900.0000235
2.
Lai
,
A. C. H.
,
Chan
,
S. N.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2016
, “
Spreading Hypothesis of a Particle Plume
,”
ASCE, J. Hydraul. Eng.
,
12
, p.
04016065
.10.1061/(ASCE)HY.1943-7900.0001211
3.
Sharif
,
F.
, and
Azimi
,
A. H.
,
2021
, “
Effects of Velocity Ratio on Dynamics of Sand-Water Coaxial Jets
,”
Int. J. Multiphase Flow
,
140
, p.
103643
.10.1016/j.ijmultiphaseflow.2021.103643
4.
Janati
,
M.
, and
Azimi
,
A. H.
,
2021a
, “
Mixing of Twin Particle Clouds in Stagnant Water
,”
ASCE J. Eng. Mech.
,
147
(
5
), p.
04021022
.10.1061/(ASCE)EM.1943-7889.0001919
5.
Janati
,
M.
, and
Azimi
,
A. H.
,
2021b
, “
On the Motion of Single and Twin Oblique Particle Clouds in Stagnant Water
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101402
.10.1115/1.4051149
6.
Rahimipour
,
H.
, and
Wilkinson
,
D.
,
1992
, “
Dynamic Behaviour of Particle Clouds
,”
Proceedings of the Eleventh Australasian Fluid Mechanics Conference, 1 and 2
,
Hobart, Australia
, Dec. 14–18, pp.
743
746
.
7.
Noh
,
Y.
, and
Fernando
,
H. J. S.
,
1993
, “
The Transition in the Sedimentation Pattern of a Particle Cloud
,”
Phys. Fluids A
,
5
(
12
), pp.
3049
3055
.10.1063/1.858715
8.
Bush
,
J. W. M.
,
Thurber
,
B. A.
, and
Blanchette
,
F.
,
2003
, “
Particle Clouds in Homogeneous and Stratified Environments
,”
J. Fluid Mech.
,
489
, pp.
29
54
.10.1017/S0022112003005160
9.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012a
, “
Computational Investigation on Vertical Slurry Jets
,”
Int. J. Multiphase Flow
,
47
, pp.
94
114
.10.1016/j.ijmultiphaseflow.2012.07.002
10.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012b
, “
Experimental Study of Sand Jet Front in Water
,”
Int. J. Multiphase Flow
,
40
, pp.
19
37
.10.1016/j.ijmultiphaseflow.2011.11.008
11.
Zhao
,
B.
,
Law
,
A. W. K.
,
Adams
,
E. E.
,
Shao
,
D.
, and
Huang
,
Z.
,
2012
, “
Effect of Air Release Height on the Formation of Sediment Thermals in Water
,”
J. Hydraul. Res.
,
50
(
5
), pp.
532
540
.10.1080/00221686.2012.715094
12.
Moghadaripour
,
M.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2017a
, “
Experimental Study of Particle Clouds in Stagnant Water
,”.
ASCE J. Eng. Mech.
,
143
(
9
), p.
04017082
.10.1061/(ASCE)EM.1943-7889.0001301
13.
Moghadaripour
,
M.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2017b
, “
Experimental Study of Oblique Particle Clouds in the Water
,”.
Int. J. Multiphase Flow
,
91
, pp.
101
119
.10.1016/j.ijmultiphaseflow.2017.01.005
14.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2014
, “
Experimental Study of Subaqueous Sand Deposition From Slurry Wall Jets
,”
ASCE J. Eng. Mech.
,
140
(
2
), pp.
296
314
.10.1061/(ASCE)EM.1943-7889.0000664
15.
Manzouri
,
M.
, and
Azimi
,
A. H.
,
2019a
, “
Effects on Oily Sand Jet Evolution From Impact Momentum and Channelization of Particles Through an Immiscible Interface
,”
Int. J. Multiphase Flow
,
121
, p.
103124
.10.1016/j.ijmultiphaseflow.2019.103124
16.
Manzouri
,
M.
, and
Azimi
,
A. H.
,
2019b
, “
A Study of Mound Formation by Discharging Sand Particles Through Oblique Pipes in Stagnant Water
,”
Int. J. Sediment Res.
,
34
(
6
), pp.
564
576
.10.1016/j.ijsrc.2019.05.003
17.
Lai
,
A. C. H.
,
Zhao
,
B.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2013
, “
Two-Phase Modelling of Sediment Clouds
,”
Environ. Fluid Mech.
,
13
(
5
), pp.
435
463
.10.1007/s10652-013-9271-x
18.
Wang
,
R.-Q.
,
Adams
,
E. E.
,
Wing-Keung Law
,
A.
, and
Lai
,
A. C. H.
,
2015
, “
Scaling Particle Cloud Dynamics: From Lab to the Field
,”
J. Hydraul. Eng.
,
141
(
7
), p.
06015006
.10.1061/(ASCE)HY.1943-7900.0000993
19.
Azimi
,
A. H.
,
2019
, “
Experimental Investigation on the Motion of Particle Cloud in Viscous Fluids
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031202
.10.1115/1.4041121
20.
Janati
,
M.
,
Manzouri
,
M.
, and
Azimi
,
A. H.
,
2022
, “
Effects of Immiscible Interface and Particle Channelization on Particle Dynamics of Oblique Oily Sand Jets
,”
Phys. Fluids
,
34
, p.
053315
.10.1063/5.0091511
21.
Buhler
,
J.
, and
Papantoniou
,
D.
,
2001
, “
On the Motion of Suspension Thermals and Particle Swarms
,”
J. Hydraul. Res.
,
39
(
6
), pp.
643
653
.10.1080/00221686.2001.9628293
22.
Azimi
,
A. H.
,
2015
, “
Experimental Investigations on the Physical and Rheological Characteristics of Sand-Foam Mixtures
,”
J. Non-Newtonian Fluid Mech.
,
221
, pp.
28
39
.10.1016/j.jnnfm.2015.04.003
23.
Mohammadidinani
,
N.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2017
, “
Experimental Investigation of Sand Jets Passing Through Immiscible Fluids
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051303
.10.1115/1.4035762
24.
Cai
,
J.
,
Hall
,
N.
,
Elenany
,
M.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2010
, “
Observations on Sand Jets in Air
,”
Journal of Engineering Mechanics
,
136
(
9
), pp.
1181
1186
.10.1061/(ASCE)EM.1943-7889.0000161
25.
Sharif
,
F.
, and
Azimi
,
A. H.
,
2020
, “
Particle Cloud Dynamics in Stagnant Water
,”
Int. J. Multiphase Flow
,
125
, p.
103197
.10.1016/j.ijmultiphaseflow.2019.103197
26.
Sharif
,
F.
, and
Azimi
,
A. H.
,
2022
, “
Experimental Study of Sand-Water Swirling Jets in Stagnant Water
,”
Exp. Fluids
,
63
(
1
), p.
26
.10.1007/s00348-021-03379-1
27.
Rojas
,
G.
, and
Loewen
,
M. R.
,
2007
, “
Fiber-Optic Probe Measurements of Void Fraction and Bubble Size Distributions Beneath Breaking Waves
,”
Exp Fluids
,
43
(
6
), pp.
895
906
.10.1007/s00348-007-0356-5
28.
Taofeeq
,
H.
,
Aradhya
,
S.
,
Shao
,
J.
, and
Al-Dahhan
,
M.
,
2018
, “
Advance Optical Fiber Probe for Simultaneous Measurements of Solids Holdup and Particles Velocity Using Simple Calibration Methods for Gas-Solid Fluidization Systems
,”
Flow Meas. Instrum.
,
63
, pp.
18
32
.10.1016/j.flowmeasinst.2018.07.001
29.
Tan
,
L.
, and
Jiang
,
J.
,
2015
, “
Active Control of Impulsive Noise Using a Nonlinear Companding Function
,”
Mech. Syst. Signal Process.
,
58–59
, pp.
29
40
.10.1016/j.ymssp.2015.01.010
30.
Lim
,
H. D.
,
Ding
,
J.
,
Shi
,
S.
, and
New
,
T. H.
,
2020
, “
Proper Orthogonal Decomposition Analysis of Near-Field Coherent Structures Associated With V-Notched Nozzle Jets
,”
Int. J. Heat Mass Transfer
,
112
, pp.
894
1777
.10.1016/j.expthermflusci.2019.109972
31.
Schmidt
,
O.
,
Towne
,
A.
,
Colonius
,
T.
,
Cavalieri
,
A.
,
Jordan
,
P.
, and
Bres
,
G.
,
2017
, “
Wave Packets and Trapped Acoustic Modes in a Turbulent Jet: Coherent Structure Education and Global Stability
,”
J. Fluid Mech.
,
825
, pp.
1153
1181
.10.1017/jfm.2017.407
32.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electrocoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
33.
Wang
,
R.-Q.
,
Law
,
W.-K.
, and
Adams
,
E. E.
,
2014
, “
Large Eddy Simulation (LES) of Settling Particle Cloud Dynamics
,”
Int. J. Multiphase Flow
,
67
, pp.
65
67
.10.1016/j.ijmultiphaseflow.2014.08.004
34.
MATLAB
,
Computer Software
,
MathWorks
,
Natick, MA
.
35.
Papanicolaou
,
P. N.
, and
List
,
E. J.
,
1988
, “
Investigations of Round Vertical Turbulent Buoyant Jets
,”
J. Fluid Mech.
,
195
(
−1
), pp.
341
391
.10.1017/S0022112088002447
36.
Lee
,
J. H. W.
, and
Chu
,
V. H.
,
2003
,
Turbulent Jets and Plumes; a Lagrangian Approach
,
Kluwer Academic Publishers Group
,
Dordrecht, The Netherlands
, p.
390
.
37.
Cooley
,
J.
, and
Tukey
,
J.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
(
90
), pp.
297
301
.10.1090/S0025-5718-1965-0178586-1
You do not currently have access to this content.