Abstract

Despite the observation of change in the cavitation regime on a heated surface, the specific section of the wall surface that plays a more dominant role in this transition phenomenon remains unknown. This study experimentally investigated the effect of surface temperature of different regions on the cavitating flow in terms of the cavitation regime. The experiments were conducted using a convergent–divergent Venturi nozzle comprising two parts that could be heated independently. The Venturi nozzle could be fully or selectively heated at either the front, where the leading edge of the cavity sheet was located, or the rear, where the cavity sheet developed. The cavitation behavior under different heating conditions was investigated using high-speed visualization and fluctuating pressure measurements. Compared with the nonheated case, which exhibited sheet-cloud cavitation, the cavitation regime on the fully heated Venturi nozzle exhibited transient cavitation. The same transition phenomenon was also observed when only the front part of the Venturi nozzle was heated. In contrast, heating the rear part alone did not induce a change in the cavitation regime. Therefore, it appeared that the transition of the cavitation regime on a heated surface was mainly influenced by the temperature increase at the leading edge of the cavity sheet.

References

1.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
3.
Arndt
,
R. E.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Twenty-Third Symposium on Naval Hydrodynamics
,
Val de Reuil
,
France
, Sept.
17
22
.
4.
Pelz
,
P.
,
Keil
,
T.
, and
Groß
,
T.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.10.1017/jfm.2017.75
5.
Fujii
,
A.
,
Kawakami
,
D. T.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E.
,
2007
, “
Effect of Hydrofoil Shapes on Partial and Transitional Cavity Oscillations
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
669
673
.10.1115/1.2734183
6.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2005
, “
Thermal Cavitation Experiments on a NACA 0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
7.
Skripkin
,
S. G.
,
Starinskiy
,
S. V.
,
Tsoy
,
M. A.
,
Vasiliev
,
M. M.
, and
Kravtsova
,
A. Y.
,
2023
, “
Effect of a Textured Surface on the Occurrence and Development of Cavitation on the Hydrofoil
,”
Phys. Fluids
,
35
(
2
), p.
025109
.10.1063/5.0136468
8.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
9.
Franc
,
J. P.
,
Janson
,
E.
,
Morel
,
P.
,
Rebattet
,
C.
, and
Riondet
,
M.
,
2001
, “
Visualizations of Leading Edge Cavitation in an Inducer at Different Temperatures
,”
CAV2001: 4th International Symposium on Cavitation
,
Pasadena, CA
, June
20
23
.https://caltechconf.library.caltech.edu/45/1/cav2001_sessionB7.002.pdf
10.
Brennen
,
C.
,
1973
, “
The Dynamic Behavior and Compliance of a Stream of Cavitating Bubbles
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
533
541
.10.1115/1.3447067
11.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2006
, “
Steady Analysis of the Thermodynamic Effect of Partial Cavitation Using the Singularity Method
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
121
127
.10.1115/1.2409333
12.
Ge
,
M.
,
Petkovšek
,
M.
,
Zhang
,
G.
,
Jacobs
,
D.
, and
Coutier-Delgosha
,
O.
,
2021
, “
Cavitation Dynamics and Thermodynamic Effects at Elevated Temperatures in a Small Venturi Channel
,”
Int. J. Heat Mass Transfer
,
170
, p.
120970
.10.1016/j.ijheatmasstransfer.2021.120970
13.
Iga
,
Y.
,
Okajima
,
J.
,
Yamagichi
,
Y.
,
Sasaki
,
H.
, and
Ito
,
Y.
,
2023
, “
Thermodynamic Suppression Effect of Cavitation Arising in a Hydrofoil in 140 °C Hot Water
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011207
.10.1115/1.4055600
14.
Franc
,
J. P.
,
Boitel
,
G.
,
Riondet
,
M.
,
Janson
,
É.
,
Ramina
,
P.
, and
Rebattet
,
C.
,
2010
, “
Thermodynamic Effect on a Cavitating Inducer—Part I: Geometrical Similarity of Leading Edge Cavities and Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021303
.10.1115/1.4001006
15.
Gustavsson
,
J. P.
,
Denning
,
K. C.
, and
Segal
,
C.
,
2008
, “
Hydrofoil Cavitation Under Strong Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091303
.10.1115/1.2953297
16.
Zhu
,
J.
,
Wang
,
S.
, and
Zhang
,
X.
,
2020
, “
Influences of Thermal Effects on Cavitation Dynamics in Liquid Nitrogen Through Venturi Tube
,”
Phys. Fluids
,
32
(
1
), p.
012105
.10.1063/1.5132591
17.
Kim
,
H. Y.
,
Kim
,
Y. G.
, and
Kang
,
B. H.
,
2004
, “
Enhancement of Natural Convection and Pool Boiling Heat Transfer Via Ultrasonic Vibration
,”
Int. J. Heat Mass Transfer
,
36940
, pp.
295
302
.10.1016/j.ijheatmasstransfer.2003.11.033
18.
Poncet
,
C.
,
Ferrouillat
,
S.
,
Vignal
,
L.
,
Memponteil
,
A.
,
Bulliard-Sauret
,
O.
, and
Gondrexon
,
N.
,
2021
, “
Enhancement of Heat Transfer in Forced Convection by Using Dual Low-High Frequency Ultrasound
,”
Ultrason. Sonochem.
,
71
, p.
105351
.10.1016/j.ultsonch.2020.105351
19.
Zhou
,
D. W.
,
2004
, “
Heat Transfer Enhancement of Copper Nanofluid With Acoustic Cavitation
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3109
3117
.10.1016/j.ijheatmasstransfer.2004.02.018
20.
Cai
,
J.
,
Huai
,
X.
,
Yan
,
R.
, and
Cheng
,
Y.
,
2009
, “
Numerical Simulation on Enhancement of Natural Convection Heat Transfer by Acoustic Cavitation in a Square Enclosure
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1973
1982
.10.1016/j.applthermaleng.2008.09.015
21.
Schneider
,
B.
,
Koşar
,
A.
,
Kuo
,
C.-J.
,
Mishra
,
C.
,
Cole
,
G. S.
,
Scaringe
,
R. P.
, and
Peles
,
Y.
,
2006
, “
Cavitation Enhanced Heat Transfer in Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
12
), pp.
1293
1301
.10.1115/1.2349505
22.
Okajima
,
J.
,
Ito
,
M.
, and
Iga
,
Y.
,
2022
, “
Experimental Study of Cavitating Flow Influenced by Heat Transfer From Heated Hydrofoil
,”
Int. J. Multiphase Flow
,
155
, p.
104168
.10.1016/j.ijmultiphaseflow.2022.104168
23.
Sato
,
K.
, and
Okajima
,
J.
,
2023
, “
Influence of Thermodynamic Self-Suppression Effect and Wall Heating on Cavitation in a Nozzle
,”
Jpn. J. Multiphase Flow
,
37
(
1
), pp.
86
93
.10.3811/jjmf.2023.009
24.
Yang
,
N.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2023
, “
Change in Cavitation Regime on NACA0015 Hydrofoil by Heating the Hydrofoil Surface
,”
ASME J. Fluids Eng.
,
145
(
7
), p.
071201
.10.1115/1.4057004
25.
Guennoun
,
F.
,
Farhart
,
M.
,
Bouziad
,
Y. A.
, and
Avellan
,
F.
,
2003
, “
Experimental Investigation of a Particular Traveling Bubble Cavitation
,”
CAV2003: 5th International Symposium on Cavitation
,
Osaka, Japan
, Nov. 1–5.https://api.semanticscholar.org/CorpusID:97834979
26.
Rijsbergen
,
M.
,
2016
, “
A Review of Sheet Cavitation Inception Mechanisms
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, Apr. 10–15, pp.
10
15
.https://hal.science/hal-01890067/document
27.
Groß
,
T. F.
, and
Pelz
,
P. F.
,
2017
, “
Diffusion-Driven Nucleation From Surface Nuclei in Hydrodynamic Cavitation
,”
J. Fluid Mech.
,
830
, pp.
138
164
.10.1017/jfm.2017.587
28.
Coutier-Delgosha
,
O.
,
Devillers
,
J. F.
,
Pichon
,
T.
,
Vabre
,
A.
,
Woo
,
R.
, and
Legoupil
,
S.
,
2006
, “
Internal Structure and Dynamics of Sheet Cavitation
,”
Phys. Fluids
,
18
(
1
), p.
017103
.10.1063/1.2149882
29.
Ganesh
,
H.
,
Mäkiharju
,
S.
, and
Ceccio
,
S.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.10.1017/jfm.2016.425
30.
Budich
,
B.
,
Schmidt
,
S.
, and
Adams
,
N.
,
2018
, “
Numerical Simulation and Analysis of Condensation Shocks in Cavitating Flow
,”
J. Fluid Mech.
,
838
, pp.
759
813
.10.1017/jfm.2017.882
31.
Jahangir
,
S.
,
Hogendoorn
,
W.
, and
Poelma
,
C.
,
2018
, “
Dynamics of Partial Cavitation in an Axisymmetric Converging-Diverging Nozzle
,”
Int. J. Multiphase Flow
,
106
, pp.
34
45
.10.1016/j.ijmultiphaseflow.2018.04.019
32.
Gawandalkar
,
U.
, and
Poelma
,
C.
,
2022
, “
The Structure of Near-Wall Re-Entrant Flow and Its Influence on Cloud Cavitation Instability
,”
Exp. Fluids
,
63
(
5
), p.
77
.10.1007/s00348-022-03417-6
33.
Zhang
,
G.
,
Zhang
,
D.
,
Ge
,
M.
,
Petkovšek
,
M.
, and
Coutier-Delgosha
,
O.
,
2022
, “
Experimental Investigation of Three Distinct Mechanisms for the Transition From Sheet to Cloud Cavitation
,”
Int. J. Heat Mass Transfer
,
197
, p.
123372
.10.1016/j.ijheatmasstransfer.2022.123372
34.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.10.1016/j.wear.2004.08.004
35.
Danlos
,
A.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Cavitation Regime Detection Through Proper Orthogonal Decomposition: Dynamics Analysis of the Sheet Cavity on a Grooved Convergent–Divergent Nozzle
,”
Int. J. Heat Fluid Flow
,
47
, pp.
9
20
.10.1016/j.ijheatfluidflow.2014.02.001
36.
Wang
,
C.
,
Huang
,
B.
,
Zhang
,
M.
,
Wang
,
G.
,
Wu
,
Q.
, and
Kong
,
D.
,
2018
, “
Effects of Air Injection on the Characteristics of Unsteady Sheet/Cloud Cavitation Shedding in the Convergent-Divergent Channel
,”
Int. J. Multiphase Flow
,
106
, pp.
1
20
.10.1016/j.ijmultiphaseflow.2018.04.020
37.
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Furukawa
,
A.
,
2001
, “
Theoretical Analysis of Transitional and Partial Cavity Instabilities
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
692
697
.10.1115/1.1378295
38.
Che
,
B.
,
Cao
,
L.
,
Chu
,
N.
,
Likhachev
,
D.
, and
Wu
,
D.
,
2019
, “
Dynamic Behaviors of Re-Entrant Jet and Cavity Shedding During Transitional Cavity Oscillation on NACA0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061101
.10.1115/1.4041716
39.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Two-Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
,
9
(
12
), pp.
3678
3686
.10.1063/1.869505
40.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.10.1007/s003480050037
41.
Zhang
,
G.
,
Khlifa
,
I.
, and
Coutier-Delgosha
,
O.
,
2020
, “
A Comparative Study of Quasi-Stable Sheet Cavities at Different Stages Based on Fast Synchrotron X-Ray Imaging
,”
Phys. Fluids
,
32
(
12
), p.
123316
.10.1063/5.0031433
42.
Stepanoff
,
A. J.
,
1961
, “
Cavitation in Centrifugal Pumps With Liquids Other Than Water
,”
J. Eng. Power
,
83
(
1
), pp.
79
89
.10.1115/1.3673147
43.
Zuo
,
Z.
,
Zhang
,
H.
,
Ren
,
Z.
,
Chen
,
H.
, and
Liu
,
S.
,
2022
, “
Thermodynamic Effects at Venturi Cavitation in Different Liquids
,”
Phys. Fluids
,
34
(
8
), p.
083310
.10.1063/5.0097778
44.
Okajima
,
J.
, and
Stephan
,
P.
,
2019
, “
Numerical Simulation of Liquid Film Formation and Its Heat Transfer Through Vapor Bubble Expansion in a Microchannel
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1241
1249
.10.1016/j.ijheatmasstransfer.2019.03.004
You do not currently have access to this content.