Abstract

Windage loss and flow characteristics in a disk-type gap featuring scalloped structures are investigated in this paper. Special attention is paid to the size of the scallops and the associated loss models. The respective losses and scallop effects in the gap are explored with various combinations of depths, quantities, and rotating speeds. The results indicate that scallop structures positively contribute to increased windage losses, accounting for more than 60% of the overall losses. An internal spiral vortex band is formed along the scallop wall, with the scallop depth ratio exerting influences on loss, reaching a maximum of 8.1%. The current scallop loss model overlooks the consideration of the total arc length ratio of scallops to the circumference, presenting a limitation, and the maximum relative deviation from numerical simulation results is observed to be 111.4%. An increase in arc length ratio results in a higher total loss, although the loss per individual scallop is diminished, manifesting in reduced vortices and pressure differences. Furthermore, a modified model is proposed to increase the precision of the current loss model. The maximal relative deviations of 13.8% confirm that the modified model is accepted to predict the windage loss in disk-type gaps with scallops. The conclusions offer valuable insights into the structural design of impellers and high-speed electrical machines with superior efficiency.

References

1.
Saari
,
J.
,
1998
, “
Thermal Analysis of High-Speed Induction Machines
,” Ph.D. thesis,
Helsinki University of Technology
,
Espoo, Finland
.
2.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
King
,
M. A.
,
2015
, “
Off-Nominal Component Performance in a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011703
.10.1115/GT2015-42040
3.
Coren
,
D.
,
Childs
,
P. R. N.
, and
Long
,
C. A.
,
2009
, “
Windage Sources in Smooth-Walled Rotating Disc Systems
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
4
), pp.
873
888
.10.1243/09544062JMES1260
4.
Karg Bulnes
,
F.
,
Kerr
,
T.
, and
Rimpel
,
A.
,
2022
, “
Calculating Windage Losses: A Review
,”
ASME
Paper No. GT2022-82570. 10.1115/GT2022-82570
5.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.10.1115/1.4007199
6.
Roclawski
,
H.
,
Böhle
,
M.
, and
Gugau
,
M.
,
2012
, “
Multidisciplinary Design Optimization of a Mixed Flow Turbine Wheel
,”
ASME
Paper No. GT2012-68233. 10.1115/GT2012-68233
7.
Kidwell
,
J. R.
, and
Large
,
G. D.
,
1980
, “
Advanced Technology Components for Model GTP305-2 Aircraft Auxiliary Power System
,” AiResearch Mfg. Co., Phoenix, AZ, Report No.
AD-A-087838
.https://www.osti.gov/biblio/6615846
8.
Bharathan
,
R. D.
,
Manigandan
,
P.
,
Kapil
,
S.
,
Ramana Murty
,
S. V.
, and
Kishore Prasad
,
D.
,
2023
, “
Effect of Hub Clearance on Performance of Radial Turbine
,”
Proceedings of the National Aerospace Propulsion Conference. Lecture Notes in Mechanical Engineering
, Singapore, Dec. 17–19, pp.
113
124
.10.1007/978-981-19-2378-4_7
9.
Aglen
,
O.
,
2003
, “
Loss Calculation and Thermal Analysis of a High-Speed Generator
,”
IEEE International Electric Machines and Drives Conference, IEMDC'03
, Madison, WI, June 1–4, pp.
1117
1123
.10.1109/IEMDC.2003.1210375
10.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Discs
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
11.
Sirigu
,
A. S.
,
Gallizio
,
F.
,
Giorgi
,
G.
,
Bonfanti
,
M.
,
Bracco
,
G.
, and
Mattiazzo
,
G.
,
2020
, “
Numerical and Experimental Identification of the Aerodynamic Power Losses of the ISWEC
,”
J. Mar. Sci. Eng.
,
8
(
1
), p.
49
.10.3390/jmse8010049
12.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
211
(
4
), pp.
331
338
.10.1243/0957650971537231
13.
Zhao
,
Z.
,
Song
,
W.
,
Jin
,
Y.
, and
Lu
,
J.
,
2021
, “
Effect of Rotational Speed Variation on the Flow Characteristics in the Rotor-Stator System Cavity
,”
Appl. Sci.
,
11
(
22
), p.
11000
.10.3390/app112211000
14.
Nemdili
,
A.
, and
Hellmann
,
D. H.
,
2004
, “
Development of an Empirical Equation to Predict the Disc Friction Losses of a Centrifugallp Pump
,”
Sixth International Conference on Hydraulic Machinery and Hydrodynamics
, Timisoara, Romania, Oct. 21–22, pp.
235
240
.https://www.academia.edu/72741493/Development_of_an_Empirical_Equation_to_Predict_the_Disc_Friction_Losses_of_a_Centrifugallp_Pump
15.
Nemdili
,
A.
, and
Hellmann
,
D. H.
,
2007
, “
Investigations on Fluid Friction of Rotational Disks With and Without Modified Outlet Sections in Real Centrifugal Pump Casings
,”
Forsch Ingenieurwes
,
71
(
1
), pp.
59
67
.10.1007/s10010-006-0045-1
16.
Kanagai
,
S.
,
Suzuki
,
J.
,
Obi
,
S.
, and
Masuda
,
S.
,
2007
, “
Flow Instability and Disk Vibration of Shrouded Corotating Disk System
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1306
1313
.10.1115/1.2776958
17.
Sherikar
,
A.
,
Disimile
,
P. J.
, and
Toy
,
N.
,
2023
, “
Laminar Torsional Couette Flow Over a Wavy Disk
,”
ASME J. Fluids Eng.
,
146
(
2
), p.
021301
.10.1115/1.4063136
18.
Bruckner
,
R. J.
,
2009
, “
Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments
,”
ASME
Paper No. GT2009-60118. 10.1115/GT2009-60118
19.
Cox
,
G.
,
Wu
,
J.
, and
Finnigan
,
B.
,
2007
, “
A Study on the Flow Around the Scallops of a Mixed-Flow Turbine and Its Effect on Efficiency
,”
ASME
Paper No. GT2007-27330. 10.1115/GT2007-27330
20.
Hiett
,
G. F.
, and
Johnston
,
I. H.
,
1963
, “
Paper 7: Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
178
(
9
), pp.
28
42
.10.1243/PIME_CONF_1963_178_214_02
21.
Elliott
,
M.
,
Spence
,
S.
,
Seiler
,
M.
, and
Geron
,
M.
,
2021
, “
Aeromechanical Optimization of Scalloping in Mixed Flow Turbines
,”
ASME
Paper No. GT2021-58901. 10.1115/GT2021-58901
22.
Wang
,
Y.
,
Chen
,
H.
,
Ma
,
C.
, and
Sun
,
J. H.
,
1909
, “
Effects of Misalignment of Turbine Wheel Hub With Housing
,”
J. Phys. Conf. Ser.
, 1909, p.
012083
.10.1088/1742-6596/1909/1/012082
23.
He
,
P.
,
Sun
,
Z.
,
Guo
,
B.
,
Chen
,
H.
, and
Tan
,
C.
,
2012
, “
Aerothermal Investigation of Backface Clearance Flow in Deeply Scalloped Radial Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021002
.10.1115/1.4006664
24.
Hu
,
L.
,
Deng
,
Q.
,
Liu
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2022
, “
Effects of Surface Roughness on Windage Loss and Flow Characteristics in Shaft-Type Gap With Critical CO2
,”
Appl. Sci.
,
12
(
24
), p.
12631
.10.3390/app122412631
25.
Vrancik
,
J. E.
,
1968
, “
Prediction of Windage Power Loss in Alternators
,”
NASA
,
Washington, DC
, Report No. D-4849.
26.
Sadr
,
S.
,
Abdelli
,
A.
,
Ben-NachouaneIntuitive
,
A.
,
Friedrich
,
G.
, and
Vivier
,
S.
,
2019
, “
Comprehension and Estimation of Windage Losses in Rotor Slotted Air Gaps of Electrical Machines Using CFD-LES Methods
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
6078
6083
.10.1109/ECCE.2019.8912698
27.
Okada
,
Y.
,
Kosaka
,
T.
, and
Matsui
,
N.
,
2017
, “
Windage Loss Reduction for Hybrid Excitation Flux Switching Motors Based on Rotor Structure Design
,” IEEE International Electric Machines and Drives Conference (
IEMDC
),
Miami, FL
, May 21–24, pp.
1
8
.10.1109/IEMDC.2017.8002360
28.
Hill
,
M. J.
,
Kunz
,
R. F.
,
Medvitz
,
R. B.
,
Handschuh
,
R. F.
,
Long
,
L. N.
,
Noack
,
R. W.
, and
Morris
,
P. J.
,
2011
, “
CFD Analysis of Gear Windage Losses: Validation and Parametric Aerodynamic Studies
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031103
.10.1115/1.4003681
29.
NIST, NIST Standard Reference Database 23
,
1998
, “
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant mixtures-REFPROP, Version 6.01
,”
National Institute of Standards and Technology
, Gaithersburg, MA.
30.
Zhao
,
Z.
,
Deng
,
Q.
,
Hu
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2023
, “
Skin-Friction Coefficient Model Verification and Flow Characteristics Analysis in Disk-Type Gap for Radial Turbomachinery
,”
Appl. Sci.
,
13
(
18
), p.
10354
.10.3390/app131810354
31.
Arjun
,
S.
, and
Lenin
,
N. C.
,
2023
, “
Influence of Rotor Slot Profile on the Windage Loss in a Switched Reluctance Motor for an Electric Autorickshaw
,”
Eng. Sci. Technol. Int. J.
,
46
, p.
101493
.10.1016/j.jestch.2023.101493
32.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and Its Applications
,
Springer International Publishing
,
Cham, Switzerland
.
33.
Nachouane
,
A. B.
,
Abdelli
,
A.
,
Friedrich
,
G.
, and
Vivier
,
S.
,
2015
, “
Numerical Approach for Thermal Analysis of Heat Transfer Into a Very Narrow Air Gap of a Totally Enclosed Permanent Magnet Integrated Starter Generator
,” IEEE Energy Conversion Congress and Exposition (
ECCE
),
Montreal, QC
, Canada, Sept. 20–24, pp.
1749
1756
.10.1109/ECCE.2015.7309907
34.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
35.
Bravin
,
M.
, and
Fanelli
,
F.
,
2023
, “
Fast Rotating Non-Homogeneous Fluids in Thin Domains and the Ekman Pumping Effect
,”
J. Math. Fluid Mech.
,
25
(
4
), pp. 1–41.10.1007/s00021-023-00826-3
36.
Wu
,
C.
,
Agarwal
,
S.
,
Curless
,
B.
, and
Seitz
,
S. M.
,
2011
, “
Multicore Bundle Adjustment
,”
CVPR
,
Colorado Springs, CO
, pp.
3057
3064
.
37.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer Science and Business Media
, New York.
38.
Anderson-Sprecher
,
R.
,
1994
, “
Model Comparisons and R2
,”
Am. Stat.
,
48
(
2
), pp.
113
117
.10.1080/00031305.1994.10476036
39.
Tellinghuisen
,
J.
, and
Bolster
,
C. H.
,
2011
, “
Using R2 to Compare Least-Squares Fit Models: When It Must Fail
,”
Chemom. Intell. Lab. Syst.
,
105
(
2
), pp.
220
222
.10.1016/j.chemolab.2011.01.004
You do not currently have access to this content.