Abstract

Efficient and compact axial compressors are currently undergoing rapid development for use in microcooling systems and small-scale vehicles. Limited experimental work concentrates on the inner flow field of the compressors working at such low Reynolds numbers (Re∼104). This study examines the vortical structures and the resulting turbulence production in the transitional flow over a C4 compressor blade at a Reynolds number Re of 24,000, with a specific focus on the impact of tip clearance. The particle image velocimetry measurements reveal the tip flow structures in detail, including the tip leakage vortex (TLV) and its induced complex vortical structures. The tip secondary flow at the low Reynolds number can be divided as the tip leakage flow (TLF)/vortex and transitional boundary layer both at the end walls and the blade surfaces. The TLV propagates at the highest spanwise positions and farthest pitchwise positions at the middle tip gap size (τ/C = 3%) for the three tip gap sizes investigated. The tip flow fluctuations decrease from τ/C = 5% to τ/C = 3% and then increase from τ/C = 3% to τ/C = 1%. The spatial distribution, streamwise evolution, and individual Reynolds normal stress components contributing to the turbulent kinetic energy (TKE) are discussed. The primary contributors to the turbulence generation are examined to elucidate the flow mechanism leading to the distinct anisotropic turbulence structure in the tip region with various tip gap sizes.

References

1.
Wang
,
L.
,
Mao
,
X.
,
Gao
,
L.
,
Guo
,
Y.
, and
Yu
,
Y.
,
2023
, “
Effect of Axial Slot Casing Treatment on the Flow Instability for Different Speed Ratios in a Counter-Rotating Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
139
, p.
108374
.10.1016/j.ast.2023.108374
2.
Wang
,
T.
,
Xuan
,
Y.
, and
Han
,
X.
,
2021
, “
The Effects of Tip Gap Variation on Transonic Turbine Blade Tip Leakage Flow Based on VLES Approach
,”
Aerosp. Sci. Technol.
,
111
, p.
106542
.10.1016/j.ast.2021.106542
3.
Han
,
L.
,
Yuan
,
W.
, and
Wang
,
Y.
,
2018
, “
Influence of Tip Leakage Flow and Ejection on Stall Mechanism in a Transonic Tandem Rotor
,”
Aerosp. Sci. Technol.
,
77
, pp.
499
509
.10.1016/j.ast.2018.04.007
4.
Zhang
,
B.
,
Mao
,
X.
,
U
,
B.
,
Wang
,
H.
,
Yang
,
Z.
, and
Chen
,
Q.
,
2023
, “
Mechanisms of Oscillating Suction in Controlling the Tip Leakage Flow in a High-Load Compressor Cascade
,”
Aerosp. Sci. Technol.
,
133
, p.
108118
.10.1016/j.ast.2023.108118
5.
Xu
,
Q.
,
Wu
,
J.
,
Wu
,
L.
,
Yang
,
H.
,
Wang
,
Z.
, and
Wei
,
Y.
,
2022
, “
Pressure and Velocity Fluctuations Characteristics of the Tip Clearance Flow in an Axial Compressor Stage at the Near-Stall Condition
,”
Aerosp. Sci. Technol.
,
129
, p.
107796
.10.1016/j.ast.2022.107796
6.
Li
,
X.
,
Liu
,
Z.
,
Zhao
,
M.
,
Zhao
,
Y.
, and
He
,
Y.
,
2022
, “
Stability Improvement Without Efficiency Penalty of a Transonic Centrifugal Compressor by Casing Treatment and Impeller/Diffuser Coupling Optimization
,”
Aerosp. Sci. Technol.
,
127
, p.
107685
.10.1016/j.ast.2022.107685
7.
Luo
,
B.
,
Chu
,
W.
, and
Zhang
,
H.
,
2020
, “
Tip Leakage Flow and Aeroacoustics Analysis of a Low-Speed Axial Fan
,”
Aerosp. Sci. Technol.
,
98
, p.
105700
.10.1016/j.ast.2020.105700
8.
Inoue
,
M.
, and
Kuroumaru
,
M.
,
1989
, “
Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor
,”
ASME J. Turbomach.
,
111
(
3
), pp.
250
256
.10.1115/1.3262263
9.
Storer
,
J.
, and
Cumpsty
,
N.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.10.1115/1.2929095
10.
Lakshminarayana
,
B.
,
Zaccaria
,
M.
, and
Marathe
,
B.
,
1995
, “
The Structure of Tip Clearance Flow in Axial Flow Compressors
,”
ASME J. Turbomach.
,
117
(
3
), pp.
336
347
.10.1115/1.2835667
11.
Muthanna
,
C.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 1: Mean Flow and Turbulence Structure
,”
AIAA J.
,
42
(
11
), pp.
2320
2331
.10.2514/1.5270
12.
Wang
,
Y.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 2: Effects of Endwall Motion
,”
AIAA J.
,
42
(
11
), pp.
2332
2340
.10.2514/1.5272
13.
Wenger
,
C. W.
,
Devenport
,
W. J.
,
Wittmer
,
K. S.
, and
Muthanna
,
C.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 3: Two Point Statistics
,”
AIAA J.
,
42
(
11
), pp.
2341
2346
.10.2514/1.842
14.
Zhang
,
Z.
,
Yu
,
X.
, and
Liu
,
B. U.
,
2012
, “
Characteristics of the Tip Leakage Vortex in a Low-Speed Axial Compressor With Different Rotor Tip Gaps
,”
ASME
Paper No. GT2012-69148. 10.1115/GT2012-69148
15.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021
, “
Effects of Axial Casing Grooves on the Structure of Turbulence in the Tip Region of an Axial Turbomachine Rotor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091009
.10.1115/1.4050605
16.
Li
,
Y.
,
Tan
,
D.
,
Chen
,
H.
, and
Katz
,
J.
,
2015
, “
Effects of Tip Gap Size on the Flow Structure in the Tip Region of an Axial Turbomachine
,”
ASME
Paper No. AJKFluids2015-33787. 10.1115/AJKFluids2015-33787
17.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.10.1017/S0022112007006842
18.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
,
18
(
10
), p.
105102
.10.1063/1.2354544
19.
Boudet
,
J.
,
Caro
,
J.
,
Li
,
B.
,
Jondeau
,
E.
, and
Jacob
,
M. C.
,
2016
, “
Zonal Large-Eddy Simulation of a Tip Leakage Flow
,”
Int. J. Aeroacoust.
,
15
(
6–7
), pp.
646
661
.10.1177/1475472X16659215
20.
Boudet
,
J.
,
Cahuzac
,
A.
,
Kausche
,
P.
, and
Jacob
,
M. C.
,
2015
, “
Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering
,”
ASME J. Turbomach.
,
137
(
6
), p.
061001
.10.1115/1.4028668
21.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2015
, “
Cut-Cell Method Based Large-Eddy Simulation of Tip-Leakage Flow
,”
Phys. Fluids
,
27
(
7
), p.
075106
.10.1063/1.4926515
22.
Moghadam
,
S. M. A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2019
, “
Analysis of Tip-Leakage Flow in an Axial Fan at Varying Tip-Gap Sizes and Operating Conditions
,”
Comput. Fluids
,
183
, pp.
107
129
.10.1016/j.compfluid.2019.01.014
23.
Snelling
,
A. M.
,
Saville
,
T.
,
Stevens
,
D.
, and
Beggs
,
C. B.
,
2011
, “
Comparative Evaluation of the Hygienic Efficacy of an Ultra‐Rapid Hand Dryer versus Conventional Warm Air Hand Dryers
,”
J. Appl. Microbiol.
,
110
(
1
), pp.
19
26
.10.1111/j.1365-2672.2010.04838.x
24.
Gallo
,
E.
, and
Barrientos
,
A.
,
2022
, “
Reduction of GNSS-Denied Inertial Navigation Errors for Fixed Wing Autonomous Unmanned Air Vehicles
,”
Aerosp. Sci. Technol.
,
120
, p.
107237
.10.1016/j.ast.2021.107237
25.
van Rooij
,
M. P.
,
Frink
,
N. T.
,
Hiller
,
B. R.
,
Ghoreyshi
,
M.
, and
Voskuijl
,
M.
,
2019
, “
Generation of a Reduced-Order Model of an Unmanned Combat Air Vehicle Using Indicial Response Functions
,”
Aerosp. Sci. Technol.
,
95
, p.
105510
.10.1016/j.ast.2019.105510
26.
Quintana
,
A.
,
Graves
,
G.
,
Hassanalian
,
M.
, and
Abdelkefi
,
A.
,
2021
, “
Aerodynamic Analysis and Structural Integrity for Optimal Performance of Sweeping and Spanning Morphing Unmanned Air Vehicles
,”
Aerosp. Sci. Technol.
,
110
, p.
106458
.10.1016/j.ast.2020.106458
27.
Hura
,
H. S.
,
Joseph
,
J.
, and
Halstead
,
D. E.
,
2012
, “
Reynolds Number Effects in a Low Pressure Turbine
,”
ASME
Paper No. GT2012-68501. 10.1115/GT2012-68501
28.
Shao
,
Z.
,
Zhang
,
H.
, and
Wang
,
R.
,
2023
, “
Development and Loss Mechanism of Turbine Secondary Flows at a Low Reynolds Number: A Synergy Analysis
,”
Phys. Fluids
,
35
(
10
), p.
105101
.10.1063/5.0166644
29.
Osusky
,
M.
,
Ledezma
,
G.
,
Sluyter
,
G.
, and
Shankaran
,
S.
, “
Reynolds Number Impact on High Pressure Turbine Flows
,”
ASME
Paper No. GT2023-103064. 10.1115/GT2023-103064
30.
Duan
,
W.
,
Qiao
,
W.
,
Chen
,
W.
, and
Zhao
,
X.
,
2023
, “
Effects of Freestream Turbulence, Reynolds Number and Mach Number on the Boundary Layer in a Low Pressure Turbine
,”
J. Therm. Sci.
,
32
(
4
), pp.
1393
1406
.10.1007/s11630-023-1798-7
31.
Okada
,
M.
,
Simonassi
,
L.
,
Lopes
,
G.
, and
Lavagnoli
,
S.
,
2024
, “
Particle Image Velocimetry Measurements in a High-Speed Low-Reynolds Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031010
.10.1115/1.4063674
32.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Marks
,
C. R.
,
Robison
,
Z.
, and
Gross
,
A.
,
2023
, “
Low Reynolds Number Effects on the Endwall Flow Field in a High-Lift Turbine Passage
,”
ASME J. Turbomach.
,
145
(
3
), p.
031006
.10.1115/1.4055646
33.
Shi
,
L.
,
Ma
,
H.
, and
Wang
,
T.
,
2023
, “
Near Field Evolution of Blade Wakes Under the Influence of Upstream Transitional Flow in a Compressor Cascade at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
145
(
3
), p.
031205
.10.1115/1.4056451
34.
Shi
,
L.
,
Mao
,
R.
,
Wang
,
B.
,
Jia
,
D.
,
Meng
,
X.
,
Zhang
,
W.
,
Ma
,
H.
, and
Wang
,
T.
,
2023
, “
Vortex Dynamics and Associated Turbulence Production in the Separated Transitional Flow and the Wake at a Moderate Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
144
, p.
110871
.10.1016/j.expthermflusci.2023.110871
35.
Liu
,
Q.
,
Ager
,
W.
,
Hall
,
C.
, and
Wheeler
,
A. P.
,
2022
, “
Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101008
.10.1115/1.4054148
36.
Hutchings
,
J.
, and
A. Hall
,
C.
,
2021
, “
The Effects of Reynolds Number on the Stall and Pre-Stall Behavior of Compact Axial Compressors
,”
ASME J. Turbomach.
,
143
(
12
), p.
121014
.10.1115/1.4051502
37.
Castillo Pardo
,
A.
,
Williams
,
T.
,
Clark
,
C.
,
Atkins
,
N.
,
Hall
,
C.
,
Wilson
,
M.
, and
Vazquez Diaz
,
R.
,
2023
, “
Boundary Layer Control Low Reynolds Number Fan Rig Testing
,”
J. Glob. Power Propuls. Soc.
,
35
, p.
075106
.10.33737/jgpps/158035
38.
Hutchings
, J., and Hall, C. A., 2022, “In-Stall Compressor Performance and the Effects of Reynolds Number,”
ASME J. Turbomah.
, 144(8), p. 081005.10.1115/1.4053536
39.
Wang
,
Y.
,
Wu
,
Y.
,
Zong
,
H.
,
Zhang
,
H.
, and
Li
,
Y.
,
2023
, “
A Parametric Study on Control Authority and Vorticity Transport in a Compressor Airfoil With Plasma Actuation at Low Reynolds Number
,”
Phys. Fluids
,
35
(
3
), p.
036117
.10.1063/5.0141480
40.
Wang
,
Y.
,
Zhang
,
H.
,
Wu
,
Y.
,
Li
,
Y.
, and
Zhu
,
Y.
,
2022
, “
Supersonic Compressor Cascade Flow Control Using Plasma Actuation at Low Reynolds Number
,”
Phys. Fluids
,
34
(
2
), p.
027105
.10.1063/5.0081685
41.
Shi
,
L.
,
Ma
,
H.
, and
Yu
,
X.
,
2020
, “
POD Analysis of the Unsteady Behavior of Blade Wake Under the Influence of Laminar Separation Vortex Shedding in a Compressor Cascade
,”
Aerosp. Sci. Technol.
,
105
, p.
106056
.10.1016/j.ast.2020.106056
42.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin.
43.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
,
1997
, “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1427
1440
.10.1088/0957-0233/8/12/007
44.
Liu
,
B.
,
Yu
,
X.
,
Liu
,
H.
,
Jiang
,
H.
,
Yuan
,
H.
, and
Xu
,
Y.
,
2006
, “
Application of SPIV in Turbomachinery
,”
Exp. Fluids
,
40
(
4
), pp.
621
642
.10.1007/s00348-005-0102-9
45.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S003
S012
.10.1007/s003480070002
46.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2016
, “
Effects of Tip-Gap Width on the Flow Field in an Axial Fan
,”
Int. J. Heat Fluid Flow
,
61
, pp.
466
481
.10.1016/j.ijheatfluidflow.2016.06.009
47.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
48.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
49.
Gao
,
Y.
, and
Liu
,
C.
,
2018
, “
Rortex and Comparison With Eigenvalue-Based Vortex Identification Criteria
,”
Phys. Fluids
,
30
(
8
), p.
085107
.10.1063/1.5040112
50.
Liu
,
C.
,
Gao
,
Y.
,
Tian
,
S.
, and
Dong
,
X.
,
2018
, “
Rortex—A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions
,”
Phys. Fluids
,
30
(
3
), p.
035103
.10.1063/1.5023001
51.
Li
,
Y.
,
2018
, “
Effects of Tip Gap Sizes and Operating Conditions on the Flow Structures and the Complex Turbulence in the Tip Region of an Axial Compressor Rotor
,” Ph.D. thesis,
Johns Hopkins University
.
You do not currently have access to this content.