Abstract

Airfoil leading-edge fluid-blowing control is computationally studied to improve aerodynamic efficiency. The fluid injection momentum coefficient Cμ (the ratio of injection to incoming square velocities times the slot's width to airfoil's half chord length) varies from 0.5% to 5.4%. Both static and dynamic conditions are investigated for a NACA0018 airfoil at low speed and Reynolds number of 250 k based on the airfoil's chord length. The airfoil is dynamically pitched at a reduced frequency (the pitching tangential speed to the freestream speed ratio), varying between 0.0078 and 0.2. Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) is used in the simulations as based on the Transition SST and Spalart–Allmaras models, generally achieving good agreement with experimental results in lift and drag coefficients and in the pressure coefficient distributions along the airfoil. It is found that oscillating the airfoil can delay stall, as expected, in dynamic stall (DS). Leading-edge blowing control can also significantly delay stall both in static and dynamic conditions as long as sufficient momentum is applied to the control. On the other hand, for a small Cμ such as 0.5%, the leading-edge control worsens the performance and hastens the appearance of stall in both static and dynamic conditions. The airfoil's oscillation reduces the differences between pitch-up and pitch-down aerodynamic performances. Detailed analysis of vorticity, pressure, velocity, and streamline contours is given to provide plausible explanations and insight to the flow.

References

1.
Zhong
,
J.
,
Li
,
J.
,
Guo
,
P.
, and
Wang
,
Y.
,
2019
, “
Dynamic Stall Control on a Vertical Axis Wind Turbine Aerofoil Using Leading-Edge Rod
,”
Energy
,
174
, pp.
246
260
.10.1016/j.energy.2019.02.176
2.
Gharali
,
K.
, and
Johnson
,
D. A.
,
2012
, “
Numerical Modeling of an S809 Airfoil Under Dynamic Stall, Erosion and High Reduced Frequencies
,”
Appl. Energy
,
93
, pp.
45
52
.10.1016/j.apenergy.2011.04.037
3.
Chaitanya
,
P.
,
Joseph
,
P.
,
Chong
,
T. P.
,
Priddin
,
M.
, and
Ayton
,
L.
,
2020
, “
On the Noise Reduction Mechanisms of Porous Aerofoil Leading Edges
,”
J. Sound Vib.
,
485
, p.
115574
.10.1016/j.jsv.2020.115574
4.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
(Cambridge Aerospace Series), 2nd ed.,
Cambridge University Press
,
Cambridge
.
5.
Eggleston
,
D. M.
, and
Stoddard
,
F.
,
1987
,
Wind Turbine Engineering Design
,
Van Nostrand Reinhold Company
,
New York
.
6.
Sasson
,
B.
, and
Greenblatt
,
D.
,
2011
, “
Effect of Leading-Edge Slot Blowing on a Vertical Axis Wind Turbine
,”
AIAA J.
,
49
(
9
), pp.
1932
1942
.10.2514/1.J050851
7.
Müller-Vahl
,
H. F.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2016
, “
Dynamic Stall Control Via Adaptive Blowing
,”
Renewable Energy
,
97
, pp.
47
64
.10.1016/j.renene.2016.05.053
8.
Chen
,
Y.
,
Avital
,
E. J.
, and
Santra
,
S.
,
2022
, “
Computational Study of Aerofoil's Self-Noise When Subject to Leading Edge Jet Blowing Flow Control
,”
AIAA
Paper No.
2022
2920
.
9.
Xiao
,
Q.
,
Liu
,
W.
, and
Incecik
,
A.
,
2013
, “
Flow Control for VATT by Fixed and Oscillating Flap
,”
Renewable Energy
,
51
, pp.
141
152
.10.1016/j.renene.2012.09.021
10.
Greenblatt
,
D.
,
Müller-Vahl
,
H.
,
Lautman
,
R.
,
Ben-Harav
,
A.
, and
Eshel
,
B.
,
2015
, “
Dielectric Barrier Discharge Plasma Flow Control on a Vertical Axis Wind Turbine
,”
Active Flow and Combustion Control
,
Springer International Publishing
, Berlin, Germany, pp.
71
86
.
11.
Greenblatt
,
D.
, and
Lautman
,
R.
,
2015
, “
Inboard/Outboard Plasma Actuation on a Vertical-Axis Wind Turbine
,”
Renewable Energy
,
83
, pp.
1147
1156
.10.1016/j.renene.2015.05.020
12.
Velasco
,
D.
,
Mejia
,
O. L.
, and
Laín
,
S. L.
,
2017
, “
Numerical Simulations of Active Flow Control With Synthetic Jets in a Darrieus Turbine
,”
Renewable Energy
,
113
, pp.
129
140
.10.1016/j.renene.2017.05.075
13.
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
2001
, “
Dynamic Stall Control by Periodic Excitation, Part 1: NACA 0015 Parametric Study
,”
J. Aircr.
,
38
(
3
), pp.
430
438
.10.2514/2.2810
14.
Mai
,
H.
,
Dietz
,
G.
,
Geißler
,
W.
,
Richter
,
K.
,
Bosbach
,
J.
,
Richard
,
H.
, and
de Groot
,
K.
,
2008
, “
Dynamic Stall Control by Leading Edge Vortex Generators
,”
J. Am. Helicopter Soc.
,
53
(
1
), pp.
26
36
.10.4050/JAHS.53.26
15.
Reid
,
E. G.
, and
Bamber
,
M. J.
,
1928
, “
Preliminary Investigation on boundary layer Control by Means of Suction and Pressure With the U.S.A. 27 Airfoil
,”
National Advisory Committee for Aeronautics
, Report No.
NACA-TR-286
.https://digital.library.unt.edu/ark:/67531/metadc54004/m1/2/
16.
Knight
,
M.
, and
Bamber
,
M. J.
,
1929
, “
Wind Tunnel Tests on Airfoil Boundary Layer Control Using a Backward Opening Slot
,”
National Advisory Committee for Aeronautics
, Report No.
NACA-TR-385
.https://digital.library.unt.edu/ark:/67531/metadc66043/
17.
Poisson-Quinton
,
P.
, and
Lepage
,
L.
,
1961
, “
Boundary Layer and Flow Control: Its Principles and Application
,”
Survey of French Research on the Control of Boundary Layer and Circulation
, Vol.
1
,
G. V.
Lachmann
, ed.,
Pergamon
,
New York
, pp.
21
73
.
18.
Sun
,
M.
, and
Sheikh
,
S. R.
,
1999
, “
Dynamic Stall Suppression on an Oscillating Airfoil by Steady and Unsteady Tangential Blowing
,”
Aerosp. Sci. Technol.
,
3
(
6
), pp.
355
366
.10.1016/S1270-9638(00)86426-3
19.
Gardner
,
A. D.
,
Richter
,
K.
,
Mai
,
H.
, and
Neuhaus
,
D.
,
2014
, “
Experimental Investigation of High-Pressure Pulsed Blowing for Dynamic Stall Control
,”
CEAS Aeronaut. J.
,
5
(
2
), pp.
185
198
.10.1007/s13272-014-0099-y
20.
Müller-Vahl
,
H. F.
,
Strangfeld
,
C.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2015
, “
Control of Thick Airfoil, Deep Dynamic Stall Using Steady Blowing
,”
AIAA J.
,
53
(
2
), pp.
277
295
.10.2514/1.J053090
21.
Qijun
,
Z. H. A. O.
,
Yiyang
,
M. A.
, and
Guoqing
,
Z. H. A. O.
,
2017
, “
Parametric Analyses on Dynamic Stall Control of Rotor Airfoil Via Synthetic Jet
,”
Chin. J. Aeronaut.
,
30
(
6
), pp.
1818
1834
.10.1016/j.cja.2017.08.011
22.
Spentzos
,
A.
,
Barakos
,
G.
,
Badcock
,
K.
,
Richards
,
B.
,
Wernert
,
P.
,
Schreck
,
S.
, and
Raffel
,
M.
,
2004
, “
CFD Investigation of 2D and 3D Dynamic Stall
,”
AHS International 4th Decennial Specialists' Conference on Aeromechanics
, San Francisco, CA, Jan.
21
23
.https://www.researchgate.net/publication/44241365_CFD_investigation_of_2D_and_3D_dynamic_stall
23.
Hutomo
,
G.
,
Bangga
,
G. S.
, and
Sasongko
,
H.
,
2016
, “
CFD Studies of the Dynamic Stall Characteristics on a Rotating Airfoil
,”
Appl. Mech. Mater.
,
836
, pp.
109
114
.10.4028/www.scientific.net/AMM.836.109
24.
Jain
,
R.
,
Le Pape
,
A.
,
Grubb
,
A.
,
Costes
,
M.
,
Richez
,
F.
, and
Smith
,
M.
,
2018
, “
High-Resolution Computational Fluid Dynamics Predictions for the Static and Dynamic Stall of a Finite-Span OA209 Wing
,”
J Fluids Struct.
,
78
, pp.
126
145
.10.1016/j.jfluidstructs.2017.12.012
25.
Zhu
,
C.
,
Chen
,
J.
,
Wu
,
J.
, and
Wang
,
T.
,
2019
, “
Dynamic Stall Control of the Wind Turbine Airfoil Via Single-Row and Double-Row Passive Vortex Generators
,”
Energy
,
189
, p.
116272
.10.1016/j.energy.2019.116272
26.
Ullah
,
T.
,
Javed
,
A.
,
Abdullah
,
A.
,
Ali
,
M.
, and
Uddin
,
E.
,
2020
, “
Computational Evaluation of an Optimum Leading-Edge Slat Deflection Angle for Dynamic Stall Control in a Novel Urban-Scale Vertical Axis Wind Turbine for Low Wind Speed Operation
,”
Sustainable Energy Technol. Assess.
,
40
, p.
100748
.10.1016/j.seta.2020.100748
27.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2019
, “
CFD Analysis for the Performance of Micro-Vortex Generator on Aerofoil and Vertical Axis Turbine
,”
J. Renewable Sustainable Energy
,
11
(
4
), p.
043302
.10.1063/1.5110422
28.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2020
, “
Performance Improvements for a vertical axis wind Turbine by Means of Gurney Flap
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021205
.10.1115/1.4044995
29.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2021
, “
Aerodynamic Performance Improvements of a Vertical Axis Wind Turbine by Leading-Edge Protuberance
,”
J. Wind. Eng. Ind. Aerodyn.
,
211
, p.
104535
.10.1016/j.jweia.2021.104535
30.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,”
Sansia National Laboratories
,
New Mexico
, Report No.
SAND80-2114
.https://digital.library.unt.edu/ark:/67531/metadc1191254/
31.
Saleh
,
Z. J.
,
Avital
,
E. J.
, and
Korakianitis
,
T.
,
2021
, “
Effect of in-Service Burnout Effect on the Transonic Leakage Flow Over Cavity Tip Model
,”
Proc. Inst. Mech. Eng., Part A
,
235
(
8
), pp.
1847
1863
.10.1177/09576509211012113
32.
Lakey
,
S.
, and
Sangolola
,
B.
,
2007
, “
Aerodynamic Analysis of Oscillating Aerofoils, Including Dynamic Stall, Using Commercial CFD Software
,”
AIAA
Paper No.
2007
7872
.10.2514/6.2007-7872
33.
Huang
,
L.
,
Huang
,
P. G.
,
LeBeau
,
R. P.
, and
Hauser
,
T.
,
2004
, “
Numerical Study of Blowing and Suction Control Mechanism on NACA0012 Airfoil
,”
J. Aircr.
,
41
(
5
), pp.
1005
1013
.10.2514/1.2255
34.
Huang
,
L.
,
Huang
,
G.
,
LeBeau
,
R.
, and
Hauser
,
T.
,
2007
, “
Optimization of Aifoil Flow Control Using a Genetic Algorithm With Diversity Control
,”
J. Aircr.
,
44
(
4
), pp.
1337
1349
.10.2514/1.27020
35.
Sereez
,
M.
, and
Zaffar
,
U.
,
2021
, “
Dynamic Stall on High-Lift Airfoil 30p30n in Ground Proximity
,”
Open J. Fluid Dyn.
,
11
(
03
), pp.
135
152
.10.4236/ojfd.2021.113008
36.
McCroskey
,
W. J.
,
1981
, “
The Phenomenon of Dynamic Stall
,” DTIC Document, Report No.
A-8464
.https://ntrs.nasa.gov/api/citations/19810011501/downloads/19810011501.pdf
You do not currently have access to this content.