Abstract

Cage-typed sleeve control valve (CSCV) is the key basic equipment in direct coal liquefaction projects. The working condition of CSCV has the characteristics of high-pressure difference, high velocity, and high solid content. There is a general issue of liquid–solid two-phase erosion wear in CSCV, which can easily lead to the failure of the internal structure in the valve cage. Therefore, it is necessary to study erosion wear characteristics of internal structures in the valve cage. Considering the real conditions of erosion wear in the valve cage, a simplified T-shaped flow path is designed, and the precision of both the liquid–solid two-phase flow model and the erosion prediction model is validated. The flow characteristics and erosion wear characteristics in the T-shaped flow path under different working conditions are studied. Based on the simulation results of different structural parameters and boundary conditions, the erosion wear of the T-shaped flow path is predicted and calculated by the response surface method. Subsequently, the prediction formula for the maximum erosion rate is derived. The formula enables the swift determination of optimal structural parameters for the flow path, aiming to mitigate damage to the valve caused by erosion wear. This work can quickly predict the erosion wear rate of the key areas in the valve cage, which can provide a certain reference value for the life prediction and structural optimization of CSCV, and it can also benefit the safety and maintenance of the coal liquefaction system.

References

1.
Dou
,
Z.
,
Jiang
,
J. C.
,
Wang
,
Z. R.
,
Pan
,
X. H.
,
Shu
,
C. M.
, and
Liu
,
L. F.
,
2017
, “
Applications of RBI on Leakage Risk Assessment of Direct Coal Liquefaction Process
,”
J. Loss Prev. Process. Ind.
,
45
, pp.
194
202
.10.1016/j.jlp.2016.12.006
2.
Ou
,
G.
,
Cao
,
X.
,
Wang
,
C.
,
Duan
,
A.
, and
Jin
,
H.
,
2022
, “
CFD-DEM-Based Numerical Simulation of Erosion Characteristic of Multistage Pressure Relief String Regulating Valve
,”
J. Appl. Fluid Mech.
,
15
(
4
), pp.
999
1015
.10.47176/jafm.15.04.1022
3.
Zheng
,
Z. J.
,
Ou
,
G. F.
,
Ye
,
H. J.
,
Zhang
,
L. T.
,
Wang
,
C.
,
Jin
,
H. Z.
, and
Shu
,
G. P.
,
2016
, “
Investigation on Failure Process and Structural Optimization of a High Pressure Letdown Valve
,”
Eng. Fail. Anal.
,
66
, pp.
223
239
.10.1016/j.engfailanal.2016.04.023
4.
He
,
J.
,
Liu
,
Q. H.
,
Long
,
Z.
,
Zhang
,
Y. J.
,
Liu
,
X. M.
,
Xiang
,
S. B.
,
Li
,
B. B.
, and
Qiao
,
S. Y.
,
2022
, “
Characteristics of Cavitation Flow for a Regulating Valve Based on Entropy Production Theory
,”
Energies
,
15
(
17
), p.
6480
.10.3390/en15176480
5.
Yi
,
J. Z.
,
Hu
,
H. X.
,
Zheng
,
Y. G.
, and
Zhang
,
Y.
,
2016
, “
Experimental and Computational Failure Analysis of a High Pressure Regulating Valve in a Chemical Plant
,”
Eng. Fail. Anal.
,
70
, pp.
188
199
.10.1016/j.engfailanal.2016.07.015
6.
Hamed
,
M. H.
,
Ibrahim
,
K. A.
, and
El-Kadi
,
M. A.
,
2010
, “
CFD Evaluation of Solid Particles Erosion in Curved Ducts
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071303
.10.1115/1.4001968
7.
Zolfagharnasab
,
M. H.
,
Salimi
,
M.
,
Zolfagharnasab
,
H.
,
Alimoradi
,
H.
,
Shams
,
M.
, and
Aghanajafi
,
C.
,
2021
, “
A Novel Numerical Investigation of Erosion Wear Over Various 90-Degree Elbow Duct Sections
,”
Powder Technol.
,
380
, pp.
1
17
.10.1016/j.powtec.2020.11.059
8.
Peng
,
W. S.
,
Cao
,
X. W.
,
Hou
,
J.
,
Ma
,
L.
,
Wang
,
P.
, and
Miao
,
Y. C.
,
2021
, “
Numerical Prediction of Solid Particle Erosion Under Upward Multiphase Annular Flow in Vertical Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104427
.10.1016/j.ijpvp.2021.104427
9.
Cui
,
B. C.
,
Chen
,
P.
, and
Zhao
,
Y. Q.
,
2022
, “
Numerical Simulation of Particle Erosion in the Vertical-Upward-Horizontal Elbow Under Multiphase Bubble Flow
,”
Powder Technol.
,
404
, p.
117437
.10.1016/j.powtec.2022.117437
10.
Zhang
,
Y. L.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2009
, “
Improvements of Particle Near-Wall Velocity and Erosion Predictions Using a Commercial CFD Code
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031303
.10.1115/1.3077139
11.
Ou
,
G. F.
,
Ouyang
,
P. W.
,
Zheng
,
Z. J.
,
Jin
,
H. Z.
,
Bie
,
K. B.
, and
Wang
,
C.
,
2019
, “
Investigation on Failure Process and Structural Improvement of a High-Pressure Coal Water Slurry Valve
,”
Eng. Fail. Anal.
,
96
, pp.
1
17
.10.1016/j.engfailanal.2018.09.003
12.
Bilal
,
F. S.
,
Sedrez
,
T. A.
, and
Shirazi
,
S. A.
,
2021
, “
Experimental and CFD Investigations of 45 and 90 Degrees Bends and Various Elbow Curvature Radii Effects on Solid Particle Erosion
,”
Wear
,
476
, p.
203646
.10.1016/j.wear.2021.203646
13.
Guzmán
,
J. E. V.
, and
Zenit
,
R.
,
2011
, “
Application of the Euler–Lagrange Method to Model Developed Hydrodynamic Slugs in Conduits
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041301
.10.1115/1.4003763
14.
Peters
,
A.
, and
el Moctar
,
O.
,
2020
, “
Numerical Assessment of Cavitation-Induced Erosion Using a Multi-Scale Euler–Lagrange Method
,”
J. Fluid Mech.
,
894
, p.
A19
.10.1017/jfm.2020.273
15.
Yin
,
Y. B.
,
Yuan
,
J. Y.
, and
Guo
,
S. R.
,
2017
, “
Numerical Study of Solid Particle Erosion in Hydraulic Spool Valves
,”
Wear
,
392–
393, pp.
174
189
.10.1016/j.wear.2017.09.021
16.
Liu
,
X. Q.
,
Ji
,
H.
,
Liu
,
F.
,
Li
,
N. A.
,
Zhang
,
J. N.
, and
Ren
,
W.
,
2022
, “
Particle Motion and Erosion Morphology of the Spool Orifice in an Electro-Hydraulic Servo Valve Under a Small Opening
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
6
), pp.
3160
3173
.10.1177/09544062211034912
17.
Hu
,
G.
,
Zhang
,
P.
,
Wang
,
G. R.
,
Zhu
,
H.
,
Li
,
Q. C.
,
Zhao
,
S. P.
,
Qiao
,
K.
, and
Wang
,
T.
,
2017
, “
Performance Study of Erosion Resistance on Throttle Valve of Managed Pressure Drilling
,”
J. Pet. Sci. Eng.
,
156
, pp.
29
40
.10.1016/j.petrol.2017.05.011
18.
Ma
,
G. F.
,
Lin
,
Z.
, and
Zhu
,
Z. C.
,
2020
, “
Investigation of Transient Gas-Solid Flow Characteristics and Particle Erosion in a Square Gate Valve
,”
Eng. Fail. Anal.
,
118
, p.
104827
.10.1016/j.engfailanal.2020.104827
19.
Liu
,
J. G.
,
Wang
,
G. S.
,
Peng
,
T. H.
, and
Jiang
,
S. Q.
,
2019
, “
Numerical Simulation of Solid Particle Erosion in Aluminum Alloy Spool Valve
,”
Math. Probl. Eng.
,
2019
, pp.
1
16
.10.1155/2019/9465406
20.
Yu
,
W. C.
,
Fede
,
P.
,
Climent
,
E.
, and
Sanders
,
S.
,
2019
, “
Multi-Fluid Approach for the Numerical Prediction of Wall Erosion in an Elbow
,”
Powder Technol.
,
354
, pp.
561
583
.10.1016/j.powtec.2019.06.007
21.
Ghafori
,
H.
,
2020
, “
Computational Fluid Dynamics (CFD) Analysis of Pipeline in the Food Pellets Cooling System
,”
J. Stored Prod. Res.
,
87
, p.
101581
.10.1016/j.jspr.2020.101581
22.
Peng
,
D. H.
,
Dong
,
S. H.
,
Wang
,
Z. Q.
,
Wang
,
D. Y.
,
Chen
,
Y. N.
, and
Zhang
,
L. B.
,
2021
, “
Characterization of the Solid Particle Erosion of the Sealing Surface Materials of a Ball Valve
,”
Metals
,
11
(
2
), p.
263
.10.3390/met11020263
23.
Wheeler
,
D. W.
, and
Wood
,
R. J. K.
,
2005
, “
Erosion of Hard Surface Coatings for Use in Offshore Gate Valves
,”
Wear
,
258
(
1–4
), pp.
526
536
.10.1016/j.wear.2004.03.035
24.
Du
,
R.
,
Zhou
,
Y.
,
Zhang
,
A.
,
Du
,
Z. H.
,
Zhang
,
X. Y.
, and
Yuan
,
X. L.
,
2021
, “
An Optimized E/CRC Erosion Model of Round Particles for Hydraulic Spool Valves With Euler–Lagrange Two-Phase Simulation
,”
Tribol. Trans.
,
64
(
5
), pp.
795
812
.10.1080/10402004.2021.1912445
25.
Zhang
,
J.
,
Lian
,
Z. H.
,
Zhou
,
Z. M.
,
Xiong
,
M.
, and
Yang
,
X. L.
,
2022
, “
Erosion Wear of KQ52 Alloy Steel Multi-Function Four-Way Valve Emergent Discharge Behaviors
,”
Trans. Indian Inst. Met.
,
75
(
1
), pp.
217
228
.10.1007/s12666-021-02416-1
26.
Lin
,
Z.
,
Ruan
,
X. D.
,
Zhu
,
Z. C.
, and
Fu
,
X.
,
2014
, “
Three-Dimensional Numerical Investigation of Solid Particle Erosion in Gate Valves
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
10
), pp.
1670
1679
.10.1177/0954406213498543
27.
Marinaro
,
G.
,
Frosina
,
E.
,
Senatore
,
A.
, and
Stelson
,
K. A.
,
2021
, “
A Fast and Effective Method for the Optimization of the Valve Plate of Swashplate Axial Piston Pumps
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091203
.10.1115/1.4050706
28.
Lin
,
Z.
,
Wang
,
D. R.
,
Tao
,
J. Y.
,
Zhu
,
Z. C.
, and
Guo
,
X. M.
,
2022
, “
Transient Regulating Characteristics of V-Port Ball Valve in Opening and Closing Process
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101201
.10.1115/1.4054191
29.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2017
, “
Topology Optimization of a No-Moving-Part Valve Incorporating Pareto Frontier Exploration
,”
Struct. Multidiscip. Optim.
,
56
(
4
), pp.
839
851
.10.1007/s00158-017-1690-8
30.
Corbera Caraballo
,
S.
,
Olazagoitia Rodríguez
,
J. L.
,
Lozano Ruiz
,
J. A.
, and
Álvarez Fernández
,
R.
,
2017
, “
Optimization of a Butterfly Valve Disc Using 3D Topology and Genetic Algorithms
,”
Struct. Multidiscip. Optim.
,
56
(
4
), pp.
941
957
.10.1007/s00158-017-1694-4
31.
Wang
,
L.
,
Zheng
,
S.
,
Liu
,
X.
,
Xie
,
H.
, and
Dou
,
J.
,
2021
, “
Flow Resistance Optimization of Link Lever Butterfly Valve Based on Combined Surrogate Model
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
4255
4270
.10.1007/s00158-021-03060-5
32.
Ou
,
G.
,
Luo
,
M.
,
Gu
,
Y.
, and
Jin
,
H.
,
2022
, “
Study on Erosion-Wear Characteristics of Bidirectional Metal Seal Floating Ball Valve in Liquid-Solid Two-Phase Flow Environment
,”
Proc. Inst. Mech. Eng., Part C
epub
.10.1177/09544062221125333
33.
Mazur
,
Z.
,
Campos-Amezcua
,
R.
,
Urquiza-Beltrán
,
G.
, and
Garcı́a-Gutiérrez
,
A.
,
2004
, “
Numerical 3D Simulation of the Erosion Due to Solid Particle Impact in the Main Stop Valve of a Steam Turbine
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1877
1891
.10.1016/j.applthermaleng.2004.01.001
34.
Wang
,
G. R.
,
Chu
,
F.
,
Tao
,
S. Y.
,
Jiang
,
L.
, and
Zhu
,
H.
,
2015
, “
Optimization Design for Throttle Valve of Managed Pressure Drilling Based on CFD Erosion Simulation and Response Surface Methodology
,”
Wear
,
338–339
, pp.
114
121
.10.1016/j.wear.2015.06.001
35.
Sedrez
,
T. A.
,
Shirazi
,
S. A.
,
Rajkumar
,
Y. R.
,
Sambath
,
K.
, and
Subramani
,
H. J.
,
2019
, “
Experiments and CFD Simulations of Erosion of a 90 Elbow in Liquid-Dominated Liquid-Solid and Dispersed-Bubble-Solid Flows
,”
Wear
,
426–427
, pp.
570
580
.10.1016/j.wear.2019.01.015
36.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
37.
Alobaid
,
F.
,
Almohammed
,
N.
,
Farid
,
M. M.
,
May
,
J.
,
Rößger
,
P.
,
Richter
,
A.
, and
Epple
,
B.
,
2022
, “
Progress in CFD Simulations of Fluidized Beds for Chemical and Energy Process Engineering
,”
Prog. Energy Combust. Sci.
,
91
, p.
100930
.10.1016/j.pecs.2021.100930
38.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
39.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
40.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows Due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.10.1016/j.powtec.2015.11.028
41.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.10.1016/j.wear.2006.12.048
42.
Zeng
,
L.
,
Zhang
,
G. A.
, and
Guo
,
X. P.
,
2014
, “
Erosion–Corrosion at Different Locations of X65 Carbon Steel Elbow
,”
Corros. Sci.
,
85
, pp.
318
330
.10.1016/j.corsci.2014.04.045
You do not currently have access to this content.