Abstract

The design and optimization of propellers for unmanned aerial vehicles (UAVs) are essential for optimal performance and high efficiency. This study presents a numerical investigation of the aerodynamic performance of coaxial octocopters using openfoam as flow solver. While the aerodynamic performance is affected by many parameters, the current study focuses on four main parameters: the propeller type, the horizontal and vertical separation distances between the propellers, and the ratio between the rotational speeds of the upper propeller and the lower one. To find the minimum number of simulations to be performed within defined limits, and reduce the number of computational fluid dynamics (CFD) simulations that cause high computational cost, Taguchi method was employed. In this study, average thrusts were calculated for the preliminary design of the octocopter by examining an isolated single propeller and dual- and quad propellers taking their rotation directions into account. The Taguchi design matrix revealed that for all cases investigated, the propeller type is the most dominant design parameter followed by the velocity ratio of the upper propeller to the lower one (nU/nL) and vertical (z/D) and horizontal (/D) orientation of coaxial propellers. However, it was shown that /D and z/D may play a significant role in vortex formation and pressure fluctuations which should be considered as design criteria for coaxial octocopters associated with flow attributes. The results showed that the aerodynamic performance parameters are not dependent on all the selected parameters, and demonstrated that the selected propeller designs improved aerodynamic performance.

References

1.
Henrich Focke
,
E. H.
,
1965
, “
Fifth Cierva Memorial Lecture
,”
J. R. Aeronaut. Soc.
,
69
(
653
), pp.
293
305
.10.1017/S0001924000059558
2.
Holzsager
,
J. E.
,
2017
,
The Effects of Coaxial Propellers for the Propulsion of Multirotor Systems
, Chap. 1, p.
3
,
Rutgers, The State University of New Jersey
,
New Brunswick, NJ
.
3.
Shetty
,
D.
, and
Manzione
,
L.
,
2011
, “
Unmanned Aerial Vehicles (Uav): Design Trends
,”
ASME
Paper No. IMECE2011-64518.10.1115/IMECE2011-64518
4.
Yun
,
J.
,
Choi
,
H.
, and
Lee
,
J.
,
2014
, “
CFD-Based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape
,”
Trans. Korean Soc. Mech. Eng., A
,
38
(
5
), pp.
513
520
.10.3795/KSME-A.2014.38.5.513
5.
Mushynski
,
A. T.
, and
Johnson
,
T. J.
,
2017
, “
Analysis and Design of a Low Reynolds Propeller for Optimal Unmanned Aerial Vehicle (Uav) Flight
,”
ASME
Paper No. IMECE2017-71164.10.1115/IMECE2017-71164
6.
Ventura Diaz
,
P.
, and
Yoon
,
S.
,
2018
, “
High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles
,”
AIAA
Paper No. 2018–1266.10.2514/6.2018-1266
7.
Yoon
,
S.
,
Chan
,
W. M.
, and
Pulliam
,
T. H.
,
2017
, “
Computations of Torque-Balanced Coaxial Rotor Flows
,”
AIAA
Paper No. 2017–0052.10.2514/6.2017-0052
8.
Manetti
,
E.
,
2023
, “
CFD Analysis, Experimental Validation and Optimization of an Octocopter Drone With Counter-Rotating Propellers
,”
Aerotec. Missili Spazio
,
102
(
1
), pp.
17
27
.10.1007/s42496-022-00140-7
9.
Russo
,
N.
,
Marano
,
A. D.
,
Gagliardi
,
G. M.
,
Guida
,
M.
,
Polito
,
T.
, and
Marulo
,
F.
,
2023
, “
Thrust and Noise Experimental Assessment on Counter-Rotating Coaxial Rotors
,”
Aerospace
,
10
(
6
), p.
535
.10.3390/aerospace10060535
10.
Lei
,
Y.
,
Bai
,
Y.
,
Xu
,
Z.
,
Gao
,
Q.
, and
Zhao
,
C.
,
2013
, “
An Experimental Investigation on Aerodynamic Performance of a Coaxial Rotor System With Different Rotor Spacing and Wind Speed
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
779
785
.10.1016/j.expthermflusci.2012.09.022
11.
Gov
,
I.
,
2020
, “
Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor
,”
El-Cezeri Fen ve Mühendislik Derg.
,
7
(
2
), pp.
487
502
.10.31202/ecjse.660136
12.
Barbely
,
N. L.
,
Komerath
,
N. M.
, and
Novak
,
L. A.
,
2016
, “
A Study of Coaxial Rotor Performance and Flow Field Characteristics
,” Technical Meeting on Aeromechanics Design for Vertical Lift,
Vertical Flight Society
, p.
609
. NASA Reports No.
ARC-E-DAA-TN28910
.https://rotorcraft.arc.nasa.gov/Publications/files/CFD_Design_Framework_Barbely.pdf
13.
Ho
,
J.
,
Yeo
,
H.
, and
Bhagwat
,
M.
,
2017
, “
Validation of Rotorcraft Comprehensive Analysis Performance Predictions for Coaxial Rotors in Hover
,”
J. Am. Helicopter Soc.
,
62
(
2
), pp.
1
13
.10.4050/JAHS.62.022005
14.
Penkov
,
I.
, and
Aleksandrov
,
D.
,
School of Engineering, Department of Mechanical and Indust
2017
, “
Analysis and Study of the Influence of the Geometrical Parameters of Mini Unmanned Quad-Rotor Helicopters to Optimise Energy Saving
,”
Int. J. Automot. Mech. Eng.
,
14
(
4
), pp.
4730
4746
.10.15282/ijame.14.4.2017.11.0372
15.
Kaya
,
D.
,
Kutay
,
A. T.
, and
Tekinalp
,
O.
,
2017
, “
Experimental Investigation of Optimal Gap Distance Between Rotors of a Quadrotor Uav
,”
AIAA
Paper No. 2017–3894.10.2514/6.2017-3894
16.
Mathur
,
V.
, and
Yee
,
R. K.
,
2020
, “
Design and Analysis of a Drone Mechanism With 3-Axis of Rotation
,”
ASME
Paper No. IMECE2020-23495.10.1115/IMECE2020-23495
17.
Yoon
,
S.
,
Lee
,
H. C.
, and
Pulliam
,
T. H.
,
2016
, “
Computational Analysis of Multi-Rotor Flows
,”
AIAA
Paper No. 2016–0812.10.2514/6.2016-0812
18.
Lei
,
Y.
, and
Wang
,
H.
,
2020
, “
Aerodynamic Optimization of a Micro Quadrotor Aircraft With Different Rotor Spacings in Hover
,”
Appl. Sci.
,
10
(
4
), p.
1272
.10.3390/app10041272
19.
Wang
,
Z.
,
Henricks
,
Q.
,
Zhuang
,
M.
,
Pandey
,
A.
,
Sutkowy
,
M.
,
Harter
,
B.
,
McCrink
,
M.
, and
Gregory
,
J.
,
2019
, “
Impact of Rotor–Airframe Orientation on the Aerodynamic and Aeroacoustic Characteristics of Small Unmanned Aerial Systems
,”
Drones
,
3
(
3
), p.
56
.10.3390/drones3030056
20.
Tinney
,
C. E.
, and
Valdez
,
J.
,
2020
, “
Thrust and Acoustic Performance of Small-Scale, Coaxial, Corotating Rotors in Hover
,”
AIAA J.
,
58
(
4
), pp.
1657
1667
.10.2514/1.J058489
21.
Lim
,
J.
,
McAlister
,
K.
, and
Johnson
,
W.
,
2009
, “
Hover Performance Correlation for Full-Scale and Model-Scale Coaxial Rotors
,”
J. Am. Helicopter Soc.
,
54
(
3
), pp.
32005
3200514.07
.10.4050/JAHS.54.032005
22.
Zhu
,
K.
,
Quan
,
Q.
,
Wang
,
K.
,
Tang
,
D.
,
Tang
,
B.
,
Dong
,
Y.
,
Wu
,
Q.
, and
Deng
,
Z.
,
2023
, “
Conceptual Design and Aerodynamic Analysis of a Mars Octocopter for Sample Collection
,”
Acta Astronaut.
,
207
, pp.
10
23
.10.1016/j.actaastro.2023.02.033
23.
Lakshminarayan
,
V.
, and
Baeder
,
J.
,
2009
, “
High-Resolution Computational Investigation of Trimmed Coaxial Rotor Aerodynamics in Hover
,”
J. Am. Helicopter Soc.
,
54
(
4
), p.
42008
.10.4050/JAHS.54.042008
24.
Shukla
,
D.
, and
Komerath
,
N.
,
2019
, “
Drone Scale Coaxial Rotor Aerodynamic Interactions Investigation
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071106
.10.1115/1.4042162
25.
Li Volsi
,
P.
,
Gomez
,
D.
,
Gojon
,
R.
,
Jardin
,
T.
, and
Moschetta
,
J.-M.
,
2022
, “
Aeroacoustic Optimization of Mav Rotors
,”
Int. J. Micro Air Veh.
,
14
(
1
), pp.
1
11
.10.1177/17568293211070827
26.
Zhu
,
K.
,
Tang
,
D.
,
Quan
,
Q.
,
Wang
,
K.
,
Dong
,
Y.
, and
Deng
,
Z.
,
2023
, “
Aerodynamic Analysis and Deployment Mechanism of a Foldable Mars Quadrotor
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Harbin, Heilongjiang, China, Aug. 6–9, pp.
1263
1268
.10.1109/ICMA57826.2023.10215633
27.
Eraslan
,
Y.
,
Ozen
,
E.
, and
Oktay
,
T.
,
2020
, “
A Literature Review on Determination of Quadrotor Unmanned Aerial Vehicles Propeller Thrust and Power Coefficients
,”
Ejons X–International Conference on Mathematics–Engineering–Natural & Medical Sciences
, Batumi, GA, May 15–17, pp.
1
12
.https://www.researchgate.net/publication/341510243_A_Literature_Review_on_Determination_of_Quadrotor_Unmanned_Aerial_Vehicles_Propeller_Thrust_and_Power_Coefficients
28.
Rand
,
O.
, and
Khromov
,
V.
,
2010
, “
Aerodynamic Optimization of Coaxial Rotor in Hover and Axial Flight
,” 27th Congress of the International Council Aeronautial Science (
ICAS
), Nice, France, Sept. 19–24, pp.
1
13
.https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/634.PDF
29.
Greenshields
,
C.
,
2023
,
OpenFOAM v6 User Guide
,
The OpenFOAM Foundation
,
London
, Chap. 6.3, pp.
1487
1489
.
30.
Holzmann
,
T.
,
2019
,
Mathematics, Numerics, Derivations and OpenFOAM®
, release 7.0 ed., Chap. 11,
Holzmann CFD
, pp.
94
121
.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
32.
Propellers
,
A.
,
2022
, “APC Propeller Performance Data 13x8e,” accessed Aug. 15, 2023, https://www.apcprop.com/files/PER3_13x8E.dat
33.
Propellers, A.,
2022
, “APC Propeller Performance Data 16x8e,” accessed Aug. 15, 2023, https://www.apcprop.com/files/PER3_16x8E.dat
34.
Designs, I.,
2015
, “
Cobra cm-4012/20 Motor Test Data, kv=450 Data Collected at 22.2 Volts With t-Motor 16x5.4 cf Prop
,” Innovative Designs, Monroe, MI, accessed Aug. 15, 2023, https://innov8tivedesigns.com/images/specs//CM-4012-20-TMR-16x54-CF-Perf-6S.pdf.
You do not currently have access to this content.