Abstract

This study examines the effects of surface wettability on the drag-reducing performance of three hydrophobic coatings, namely, flouropel coating (FPC-800M), superhydrophobic binary coating (SHBC), and ultra-ever dry (UED)—when applied to curved aluminum surfaces. The wettability and flow characteristics were characterized using three liquids of different viscosities: de-ionized water and silicone oils of 5 and 10 cSt. Static and dynamic contact angles on the surfaces were measured, and the drag reduction was evaluated using a Taylor–Couette flow cell in a rheometer. The static contact angle (SCA) measurements indicated that the coated surfaces were superhydrophobic for water, with a maximum static contact angle of 158 deg, but oleophilic for the 10 cSt silicone oil, with a static contact angle of 13 deg. The rheometer measurements using water showed a maximum drag reduction of 18% for the UED-coated surfaces. Interestingly, the oleophilic surfaces (which have low SCA) showed a maximum drag reduction of 6% and 7% in the silicone oils. The observed drag reduction is due to an increase in the plastron thickness, which is caused by an increase in the Reynolds number and dynamic pressure coupled with a decrease in the static pressure normal to the superhydrophobic wall.

References

1.
Perlin
,
M.
, and
Ceccio
,
S.
,
2014
,
Mitigation of Hydrodynamic Resistance: Methods to Reduce Hydrodynamic Drag
,
World Scientific
, Tuck Link, Singapore.
2.
Aziz
,
H.
, and
Tafreshi
,
H. V.
,
2018
, “
Role of Particles Spatial Distribution in Drag Reduction Performance of Superhydrophobic Granular Coatings
,”
Int. J. Multiphase Flow
,
98
, pp.
128
138
.10.1016/j.ijmultiphaseflow.2017.09.006
3.
Li
,
Y.
,
Pan
,
Y.
, and
Zhao
,
X.
,
2018
, “
Measurement and Quantification of Effective Slip Length at Solid-Liquid Interface of Roughness-Induced Surfaces With Oleophobicity
,”
Appl. Sci.
,
8
(
6
), p.
931
.10.3390/app8060931
4.
Liravi
,
M.
,
Pakzad
,
H.
,
Moosavi
,
A.
, and
Nouri-Borujerdi
,
A.
,
2020
, “
A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction
,”
Prog. Org. Coat.
,
140
, p.
105537
.10.1016/j.porgcoat.2019.105537
5.
Bullee
,
P. A.
,
Verschoof
,
R. A.
,
Bakhuis
,
D.
,
Huisman
,
S. G.
,
Sun
,
C.
,
Lammertink
,
R. G. H.
, and
Lohse
,
D.
,
2020
, “
Bubbly Drag Reduction Using a Hydrophobic Inner Cylinder in Taylor-Couette Turbulence
,”
J. Fluid Mech.
,
883
, pp.
1
23
.10.1017/jfm.2019.894
6.
Rajappan
,
A.
,
Golovin
,
K.
,
Tobelmann
,
B.
,
Pillutla
,
V.
,
Choi
,
W.
,
Tuteja
,
A.
,
McKinley
,
G. H.
, and
Abhijeet
,
2019
, “
Influence of Textural Statistics on Drag Reduction by Scalable, Randomly Rough Superhydrophobic Surfaces in a Turbulent Flow
,”
Phys. Fluids
,
31
(
4
), p.
042107
.10.1063/1.5090514
7.
Panchanathan
,
D.
,
Rajappan
,
A.
,
Varanasi
,
K. K.
, and
McKinley
,
G. H.
,
2018
, “
Plastron Regeneration on Submerged Superhydrophobic Surfaces Using in Situ Gas Generation by Chemical Reaction
,”
ACS Appl. Mater. Interfaces
,
10
(
39
), pp.
33684
33692
.10.1021/acsami.8b12471
8.
Grossmann
,
S.
,
Lohse
,
D.
, and
Sun
,
C.
,
2016
, “
High–Reynolds Number Taylor-Couette Turbulence
,”
Annu. Rev. Fluid Mec.
,
48
(
1
), pp.
53
80
.10.1146/annurev-fluid-122414-034353
9.
Avila
,
K.
, and
Hof
,
B.
,
2013
, “
High-Precision Taylor-Couette Experiment to Study Subcritical Transitions and the Role of Boundary Conditions and Size Effects
,”
Rev. Sci. Instrum.
,
84
(
6
), p.
065106
.10.1063/1.4807704
10.
Van Gils
,
D. P. M.
,
Bruggert
,
G. W.
,
Lathrop
,
D. P.
,
Sun
,
C.
, and
Lohse
,
D.
,
2011
, “
The Twente Turbulent Taylor-Couette (T3C) Facility: Strongly Turbulent (Multiphase) Flow Between Two Independently Rotating Cylinders
,”
Rev. Sci. Instrum.
,
82
(
2
), p.
025105
.10.1063/1.3548924
11.
Raayai-Ardakani
,
S.
, and
McKinley
,
G. H.
,
2020
, “
Geometry Mediated Friction Reduction in Taylor-Couette Flow
,”
Phys. Rev. Fluids
,
5
(
12
), p.
124102
.10.1103/PhysRevFluids.5.124102
12.
Hall
,
T.
, and
Joseph
,
D.
,
2000
, “
Rotating Cylinder Drag Balance With Application to Riblets
,”
Exp. Fluids
,
29
(
3
), pp.
215
227
.10.1007/s003489900075
13.
Raayai Ardakani
,
S.
,
2018
, “
Geometry Mediated Drag Reduction Using Riblets and Wrinkled Surface Textures
,” Ph.D. thesis,
MIT
, Cambridge, MA.
14.
Greidanus
,
A. J.
,
Delfos
,
R.
,
Tokgoz
,
S.
, and
Westerweel
,
J.
,
2015
, “
Turbulent Taylor–Couette Flow Over Riblets: Drag Reduction and the Effect of Bulk Fluid Rotation
,”
Exp. Fluids
,
56
(
5
), pp.
1
13
.https://link.springer.com/article/10.1007/s00348-015-1978-7
15.
van den Berg
,
T. H.
,
Luther
,
S.
,
Lathrop
,
D. P.
, and
Lohse
,
D.
,
2005
, “
Drag Reduction in Bubbly Taylor-Couette Turbulence
,”
Phys. Rev. Lett.
,
94
(
4
), pp.
4
7
.10.1103/PhysRevLett.94.044501
16.
Sugiyama
,
K.
,
Calzavarini
,
E.
, and
Lohse
,
D.
,
2008
, “
Microbubbly Drag Reduction in Taylor–Couette Flow in the Wavy Vortex Regime
,”
J. Fluid Mech.
,
608
, pp.
21
41
.10.1017/S0022112008001183
17.
Rosenberg
,
B. J.
,
Van Buren
,
T.
,
Fu
,
M. K.
, and
Smits
,
A. J.
,
2016
, “
Turbulent Drag Reduction Over Air-and Liquid-Impregnated Surfaces
,”
Phys. Fluids
,
28
(
1
), p.
015103
.10.1063/1.4939272
18.
Bocquet
,
L.
,
Tabeling
,
P.
, and
Manneville
,
S.
,
2006
, “
Comment on "Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
10
), p.
109601
.10.1103/PhysRevLett.97.109601
19.
Schlichting
,
H.
,
1979
,
Boundary - Layer Theory
, 7th ed.,
J.
Kestin
, ed.,
McGrae-Hill Book Series in Mechanical Engineering. New York
.
20.
Reinke
,
P.
,
Schmidt
,
M.
, and
Beckmann
,
T.
,
2018
, “
The Cavitating Taylor-Couette Flow
,”
Phys. Fluids
,
30
(
10
), p.
104101
.10.1063/1.5049743
21.
Srinivasan
,
S.
,
Kleingartner
,
J. A.
,
Gilbert
,
J. B.
,
Cohen
,
R. E.
,
Milne
,
A. J.
, and
McKinley
,
G. H.
,
2015
, “
Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
114
(
1
), p.
014501
.10.1103/PhysRevLett.114.014501
22.
Paar
,
A.
, ed.,
2015
,
MCR 301 Manuel and Guideline
,
Anton Paar
, Graz, Austria.
23.
Kline
,
S. M. F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
, (
75
), pp.
3
8
.
24.
Zhang
,
X.
,
Duan
,
X.
, and
Muzychka
,
Y.
,
2018
, “
New Mechanism and Correlation for Degradation of Drag-Reducing Agents in Turbulent Flow With Measured Data From a Double-Gap Rheometer
,”
Colloid Polym. Sci.
,
296
(
4
), pp.
829
834
.10.1007/s00396-018-4300-4
25.
Golovin
,
K. B.
,
Gose
,
J.
,
Perlin
,
M.
,
Ceccio
,
S. L.
, and
Tuteja
,
A.
,
2016
, “
Bioinspired Surfaces for Turbulent Drag Reduction
,”
Philos. Trans. R. Soc. A Math., Phys. Eng. Sci.
,
374
(
2073
), p.
20160189
.10.1098/rsta.2016.0189
26.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.-H.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow
,”
Phys. Fluids
,
25
(
7
), p.
079102
.10.1063/1.4791602
27.
Zhang
,
J.
,
Tian
,
H.
,
Yao
,
Z.
,
Hao
,
P.
, and
Jiang
,
N.
,
2015
, “
Mechanisms of Drag Reduction of Superhydrophobic Surfaces in a Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
56
(
9
), pp.
1
13
.10.1007/s00348-015-2047-y
28.
Vajdi Hokmabad
,
B.
, and
Ghaemi
,
S.
,
2016
, “
Turbulent Flow Over Wetted and Non-Wetted Superhydrophobic Counterparts With Random Structure
,”
Phys. Fluids
,
28
(
1
), p.
015112
.10.1063/1.4940325
29.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.10.1103/PhysRevLett.96.066001
30.
Hashmi
,
S.
,
Batalha
,
G. F.
,
Van Tyne
,
C. J.
,
Yilbas
,
B.
, and
Rahman
,
M.
,
2014
, “
Comprehensive Materials Processing
,”
Newnes, eBook
,
13
(
1
), p.
35
.https://www.sciencedirect.com/referencework/9780080965338/comprehensive-materialsprocessing
31.
Andereck
,
C.
,
David
,
S. S.
,
Liu
., and
H. L.
,
Swinney
,
1986
, “
Flow Regimes in a Circular Couette System With Independently Rotating Cylinders
,”
J. Fluid Mech.
,
164
, pp.
155
183
.10.1017/S0022112086002513
32.
Schrimpf
,
M.
,
Esteban
,
J.
,
Warmeling
,
H.
,
Färber
,
T.
,
Behr
,
A.
, and
Vorholt
,
A. J.
,
2021
, “
Taylor‐Couette Reactor: Principles, Design, and Applications
,”
AIChE J.
,
67
(
5
), p. e17228.10.1002/aic.17228
33.
Choi
,
C. H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C. M.
, and
Kim
,
C. J.
,
2006
, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluids
,
18
(
8
), p.
087105
.10.1063/1.2337669
34.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.10.1063/1.1812011
35.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
(
6
), pp.
1
4
.10.1103/PhysRevLett.101.064501
36.
Park
,
H.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2021
, “
Superhydrophobic Drag Reduction in Turbulent Flows: A Critical Review
,”
Exp. Fluids
,
62
(
11
), p.
229
.10.1007/s00348-021-03322-4
37.
Alsharief
,
A. F. A.
,
Duan
,
X.
, and
Muzychka
,
Y. S.
,
2023
, “
Evolution of Air Plastron Thickness and Slip Length Over Superhydrophobic Surfaces in Taylor Couette Flows
,”
Fluids MDPI
,
2023
Apr. 17,
8
(
4
), p.
133
.10.3390/fluids8040133
You do not currently have access to this content.