Abstract

An experimental study of cavitating flow on a heated NACA0015 hydrofoil was conducted in a cavitation tunnel to investigate the influence of the hydrofoil surface temperature on the cavitating flow. The cavitation behavior under different heating conditions was examined using high-speed video, and an image processing method was used to obtain the periodic characteristics of the cavitating flow. The results revealed that attached sheet cavitation and supercavitation occurred on both heated and unheated hydrofoils. However, sheet-cloud cavitation was observed only on the unheated hydrofoil, whereas transient cavitation was observed only on the heated hydrofoil. Transient cavitation also exhibited periodic growth/collapse behavior; however, there was no shedding of a large vapor cloud. Moreover, with a further increase in the hydrofoil surface temperature, transient cavitation turned into open-type cavitation. The cavitating flow exhibited a quasi-steady cavity length with an open cavity closure. It was considered that the surface temperature promoted vapor generation at the cavity leading edge, which enlarged the vapor-filled fore part of the sheet cavity. This enlarged sheet cavity prevented the reentrant flow from moving upstream and thus turned the cavity closure into an open type. Once the cavity closure turned into an open type, the local disturbance led to a smaller adverse pressure gradient, which was not sufficiently strong to create a reentrant flow. In this case, if the vapor generation at the cavity leading edge was sufficiently large to reach a balance with vapor condensation at the open cavity closure, the cavity would be steady.

References

1.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, Cambridge, UK.10.1017/CBO9781107338760
2.
Iga
,
Y.
,
Okajima
,
J.
,
Yamaguchi
,
Y.
,
Hirotoshi
,
S.
, and
Yu
,
I.
,
2023
, “
Thermodynamic Suppression Effect of Cavitation Arising in a Hydrofoil in 140 °C Hot Water
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011207
.10.1115/1.4055600
3.
Franc
,
J.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
4.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2008
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.10.1115/1.2969426
5.
Williams
,
M.
,
Kawakami
,
E.
,
Amromin
,
E.
, and
Arndt
,
R. E. A.
,
2009
, “
Effect of Surface Characteristics on Hydrofoil Cavitation
,”
7th International Symposium on Cavitation
,
Ann Arbor, MI
, Paper No. 112.
6.
Amromin
,
E.
,
2017
, “
Impact of Hydrofoil Material on Cavitation Inception and Desinence
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061304
.10.1115/1.4035949
7.
Rood
,
E. P.
,
1991
, “
Review—Mechanisms of Cavitation Inception
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
163
175
.10.1115/1.2909476
8.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
9.
Kjeldsen
,
M.
,
Arndt
,
R. E. A.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
481
487
.10.1115/1.1287854
10.
Huang
,
B.
,
Young
,
Y. L.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.10.1115/1.4023650
11.
Leroux
,
J.-B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(
5
), p.
052101
.10.1063/1.1865692
12.
Arndt
,
R. E.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
,
2000
, “Instability of Partial Cavitation: A Numerical/Experimental Approach,” National Academies Press, University of Minnesota Digital Conservancy, accessed June 27, 2022, https://hdl.handle.net/11299/49781
13.
Wu
,
J.
,
Ganesh
,
H.
, and
Ceccio
,
S.
,
2019
, “Multimodal Partial Cavity Shedding on a Two-dimensional Hydrofoil and Its Relation to the Presence of Bubbly Shocks,”
Exp. Fluids
, 60, p. 66.10.1007/s00348-019-2706-5
14.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “The Cavitation Instability Induced by the Development of a Re-Entrant Jet,”
J. Fluid Mech.
, 444, pp.
223
256
.10.1017/S0022112001005420
15.
Leroux
,
J.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
,
2004
, "An Experimental Study of Unsteady Partial Cavitation,"
ASME J. Fluids Eng.
, 126(1):
94
101
.10.1115/1.1627835
16.
Holl
,
J. W.
,
1970
, “Nuclei and Cavitation.”
ASME J. Basic Eng.
, 92(4), pp. 681–688.10.1115/1.3425105
17.
Ceccio
,
S.
, and
Brennen
,
C.
,
1991
, “Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation,”
J. Fluid Mech.
, 233, pp.
633
660
.10.1017/S0022112091000630
18.
Groß
,
T. F.
,
P. F.
,
Pelz.
,
2017
, “Diffusion-Driven Nucleation from Surface Nuclei in Hydrodynamic Cavitation,”
J. Fluid Mech.
, 830, pp.
138
164
.10.1017/jfm.2017.587
19.
Pfeiffer
,
P.
,
Eisener
,
J.
,
Reese
,
H.
,
Li
,
M.
,
Ma
,
X.
,
Sun
,
C.
, and
Ohl
,
C. D.
,
2022
, “Thermally Assisted Heterogeneous Cavitation through Gas Supersaturation,”
Phys. Rev. Lett.
, 128, p. 194501.10.1103/PhysRevLett.128.194501
20.
Schneider
,
B.
,
Koşar
,
A.
,
Kuo
,
C.
,
Mishra
,
C.
,
Cole
,
G. S.
,
Scaringe
,
R. P.
, and
Peles
,
Y.
,
2006
, “Cavitation Enhanced Heat Transfer in Microchannels,”
ASME J. Heat Transfer
, 128(12), pp.
1293
1301
.10.1115/1.2349505
21.
Liu
,
B.
,
Cai
,
J.
, and
Huai
X.
,
2014
, “Heat Transfer With the Growth and Collapse of Cavitation Bubble between Two Parallel Heated Walls,”
Int. J. Heat Mass Transfer
, 78, pp.
830
838
.10.1016/j.ijheatmasstransfer.2014.07.050
22.
Wang
,
Y.
,
Sun
,
X. J.
,
Dai
,
Y. J.
,
Wu
,
G. Q.
,
Cao
,
Y.
, and
Huang
,
D. G.
,
2015
, “Numerical Investigation of Drag Reduction by Heat-enhanced Cavitation,”
Appl. Therm. Eng.
, 75, pp.
193
202
.10.1016/j.applthermaleng.2014.09.042
23.
Okajima
,
J.
,
Ito
,
M.
, and
Iga
,
Y.
,
2022
, “Experimental Study of Cavitating Flow Influenced by Heat Transfer from Heated Hydrofoil,”
Int. J. Multiphase Flow
, 155, p. 104168.10.1016/j.ijmultiphaseflow.2022.104168
24.
Iga
,
Y.
, and
Yamaguchi
,
Y.
,
2015
, “Temperature Measurement inside a Cavity in High Temperature and High Pressure Water Tunnel,”
Turbomachinery
, 43(3), pp.
177
184
.10.11458/tsj.43.3_177
25.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2018
, Digital Image Processing. 4th ed, Pearson, NJ.
26.
Suzuki
,
S.
, and
Abe
,
K.
,
1985
, “Topological Structural Analysis of Digitized Binary Images by Border Following,”
Computer Vision, Graphics, and Image Processing
, 30(1), pp.
32
46
.10.1016/0734-189X(85)90016-7
27.
Che
,
B.
,
Cao
,
L.
,
Chu
,
N.
,
Likhachev
,
D.
, and
Wu
,
D.
,
2019
, “
Dynamic Behaviors of Re-Entrant Jet and Cavity Shedding During Transitional Cavity Oscillation on NACA0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061101
.10.1115/1.4041716
28.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.10.1115/1.1596239
29.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Leroux
,
J.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
279
292
.10.1115/1.2427079
30.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
,
1998
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Fascination of Fluid Dynamics. Fluid Mechanics and Its Applications
,
A.
Biesheuvel
, and
G. F.
van Heijst
, eds., Vol.
45
,
Springer
,
Dordrecht, The Netherlands
.
31.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.10.1007/s003480050037
You do not currently have access to this content.