Abstract

Previous efforts to model uranyl fluoride formation in an impinging jet gas reactor underpredicted spatial mixing and overpredicted chemical conversion into particulates. The previous fluid dynamics model was based on the solution of the Reynolds Averaged Navier Stokes equations. After simulating fluid dynamics, aerosol dynamics were superimposed onto CFD-simulated gas reactant species concentrations. The current work explores the influence of complex unsteady flow features on the overall flow physics and chemistry for a low Reynolds number, opposed flow, impinging jet gas reactor where there is a low Reynolds number cross flow. The objective of this study was to assess the impact of model formulation on scalar mixing and transport. Transient flow simulations were performed using Scale Resolving Simulations. Large-Eddy Simulations with the dynamic Smagorinsky turbulence model were performed along with simulations which directly resolved the flow. Average and root-mean-square (RMS) velocities and species concentrations were computed along with modeled and resolved turbulence kinetic energy (TKE), modeled turbulence dissipation, and modeled turbulent viscosity. Lagrangian flow tracers were also used to quantify species concentrations along path lines emanating from the jet tips. Transient simulation data were compared to results from RANS simulations using the k-ω shear stress transport (SST) model and Reynolds Stress Model (RSM). Transient simulations showed spatial mixing patterns which were more consistent with experimental data and helped elucidate the process of particle formation observed in experiments.

References

1.
Cheng
,
M.-D.
,
Richards
,
J. M.
,
Omana
,
M. A.
,
Hubbard
,
J. A.
, and
Fugate
,
G. A.
,
2020
, “
Experimental and Computational Study of Particle Formation Kinetics in UF6 Hydrolysis
,”
React. Chem. Eng.
,
5
(
9
), pp.
1708
1718
.10.1039/D0RE00207K
2.
Richards
,
J. M.
,
Martin
,
L. R.
,
Fugate
,
G. A.
, and
Cheng
,
M.-D.
,
2020
, “
Kinetic Investigation of the Hydrolysis of Uranium Hexafluoride Gas
,”
RSC Adv.
,
10
(
57
), pp.
34729
34731
.10.1039/D0RA05520D
3.
Lutz
,
J. J.
,
Byrd
,
J. N.
,
Lotrich
,
V. F.
,
Jensen
,
D. S.
,
Zador
,
J.
, and
Hubbard
,
J. A.
,
2022
, “
A Theoretical Investigation of the Hydrolysis of Uranium Hexafluoride: The Initiation Mechanism and Vibrational Spectroscopy
,”
Phys. Chem. Chem. Phys.
,
24
(
16
), pp.
9634
9647
.10.1039/D1CP05268C
4.
Garrison
,
S. L.
, and
Becnel
,
J. M.
,
2008
, “
Transition State for the Gas-Phase Reaction of Uranium Hexafluoride With Water
,”
J. Phys. Chem. A
,
112
(
24
), pp.
5453
5457
.10.1021/jp801524v
5.
Hu
,
S.-W.
,
Wang
,
X.-Y.
,
Chu
,
T.-W.
, and
Liu
,
X.-Q.
,
2008
, “
Theoretical Mechanism Study of UF6 Hydrolysis in the Gas Phase
,”
J. Phys. Chem. A
,
112
(
37
), pp.
8877
8883
.10.1021/jp804797a
6.
Hu
,
S.-W.
,
Wang
,
X.-Y.
,
Chu
,
T.-W.
, and
Liu
,
X.-Q.
,
2009
, “
Theoretical Mechanism Study of UF6 Hydrolysis in the Gas Phase (II
),”
J. Phys. Chem. A
,
113
(
32
), pp.
9243
9248
.10.1021/jp904655w
7.
Lind
,
M. C.
,
Garrison
,
S. L.
, and
Becnel
,
J. M.
,
2010
, “
Trimolecular Reactions of Uranium Hexafluoride With Water
,”
J Phys Chem A
,
114
(
13
), pp.
4641
4646
.10.1021/jp909368g
8.
Hu
,
S.-W.
,
Lin
,
H.
,
Wang
,
X.-Y.
, and
Chu
,
T.-W.
,
2014
, “
Effect of H2O on the Hydrolysis of UF6 in the Gas Phase
,”
J. Mol. Struct.
,
1062
, pp.
29
34
.10.1016/j.molstruc.2014.01.015
9.
Hubbard
,
J. A.
,
Cheng
,
M.-D.
,
Cheung
,
L.
,
Kirsch
,
J. R.
,
Richards
,
J. M.
, and
Fugate
,
G. A.
,
2021
, “
UO2F2 Particulate Formation in an Impinging Jet Gas Reactor
,”
React. Chem. Eng.
,
6
(
8
), pp.
1428
1447
.10.1039/D1RE00105A
10.
Proulx
,
P.
, and
Bilodeau
,
J. F.
,
1991
, “
A Model for Ultrafine Powder Production in a Plasma Reactor
,”
Plasma Chem. Plasma P
,
11
(
3
), pp.
371
386
.10.1007/BF01458917
11.
Balabanova
,
E. G.
,
1998
, “
Role of the Mixing Process in a Flow Plasma Reactor for Ultrafine Powder Production
,”
High Temp. High Pressures (Print
),
30
(
4
), pp.
493
500
.10.1068/htrt139
12.
Hubbard
,
J. A.
,
Omana
,
M. A.
, and
Cheng
,
M.-D.
,
2020
, “
Aerosol Dynamics Modeling With Chemkin-Pro Surface-Kinetics User-Routines
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041007
.10.1115/1.4045607
13.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
,
New York
.
14.
Rehage
,
H.
,
Orthey
,
J.
, and
Kind
,
M.
,
2021
, “
On the Complete Similitude of Technical Precipitation. Part I: Impinging Mixers
,”
Chem. Eng. J.
,
415
, p.
129047
.10.1016/j.cej.2021.129047
15.
Krupa
,
K.
,
Sultan
,
M. A.
,
Fonte
,
C. P.
,
Nunes
,
M. I.
,
Dias
,
M. M.
,
Lopes
,
J. C. B.
, and
Santos
,
R. J.
,
2012
, “
Characterization of Mixing in T-Jets Mixers
,”
Chem. Eng. J.
,
207-208
, pp.
931
937
.10.1016/j.cej.2012.07.062
16.
Lindenberg
,
C.
, and
Mazzotti
,
M.
,
2009
, “
Experimental Characterization and Multi-Scale Modeling of Mixing in Static Mixers. Part 2. Effect of Viscosity and Scale-Up
,”
Chem. Eng. Sci.
,
64
(
20
), pp.
4286
4294
.10.1016/j.ces.2009.06.067
17.
Liu
,
Y.
, and
Fox
,
R. O.
,
2006
, “
CFD Predictions for Chemical Processing in a Confined Impinging-Jets Reactor
,”
AICHE J.
,
52
(
2
), pp.
731
744
.10.1002/aic.10633
18.
Schwertfirm
,
F.
,
Gradl
,
J.
,
Schwarzer
,
H. C.
,
Peukert
,
W.
, and
Manhart
,
M.
,
2007
, “
The Low Reynolds Number Turbulent Flow and Mixing in a Confined Impinging Jet Reactor
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1429
1442
.10.1016/j.ijheatfluidflow.2007.04.019
19.
Gillian
,
J. M.
, and
Kirwan
,
D. J.
,
2008
, “
Identification and Correlation of Mixing Times in Opposed-Jet Mixers
,”
Chem. Eng. Commun.
,
195
(
12
), pp.
1553
1574
.10.1080/00986440802115614
20.
Fonte
,
C. P.
,
Sultan
,
M. A.
,
Santos
,
R. J.
,
Dias
,
M. M.
, and
Lopes
,
J. C. B.
,
2015
, “
Flow Imbalance and Reynolds Number Impact on Mixing in Confined Impinging Jets
,”
Chem. Eng. J.
,
260
, pp.
316
330
.10.1016/j.cej.2014.08.090
21.
Gavi
,
E.
,
Marchisio
,
D. L.
, and
Barresi
,
A. A.
,
2007
, “
CFD Modelling and Scale-Up of Confined Impinging Jet Reactors
,”
Chem. Eng. Sci.
,
62
(
8
), pp.
2228
2241
.10.1016/j.ces.2006.12.077
22.
Icardi
,
M.
,
Gavi
,
E.
,
Marchisio
,
D. L.
,
Barresi
,
A. A.
,
Olsen
,
M. G.
,
Fox
,
R. O.
, and
Lakehal
,
D.
,
2011
, “
Investigation of the Flow Field in a three-Dimensional Confined Impinging Jets Reactor by Means of microPIV and DNS
,”
Chem. Eng. J.
,
166
(
1
), pp.
294
305
.10.1016/j.cej.2010.09.046
23.
Marchisio
,
D. L.
,
2009
, “
Large Eddy Simulation of Mixing and Reaction in a Confined Impinging Jets Reactor
,”
Comput. Chem. Eng.
,
33
(
2
), pp.
408
420
.10.1016/j.compchemeng.2008.11.009
24.
Marchisio
,
D. L.
,
Rivautella
,
L.
, and
Barresi
,
A. A.
,
2006
, “
Design and Scale-Up of Chemical Reactors for Nanoparticle Precipitation
,”
AICHE J.
,
52
(
5
), pp.
1877
1887
.10.1002/aic.10786
25.
Siddiqui
,
S. W.
,
Zhao
,
Y. A.
,
Kukukova
,
A.
, and
Kresta
,
S. M.
,
2009
, “
Characteristics of a Confined Impinging Jet Reactor: Energy Dissipation, Homogeneous and Heterogeneous Reaction Products, and Effect of Unequal Flow
,”
Ind. Eng. Chem. Res.
,
48
(
17
), pp.
7945
7958
.10.1021/ie801562y
26.
Johnson
,
B. K.
, and
Prud'homme
,
R. K.
,
2003
, “
Chemical Processing and Micromixing in Confined Impinging Jets
,”
AICHE J.
,
49
(
9
), pp.
2264
2282
.10.1002/aic.690490905
27.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment. 1. Flow Field Experiments
,”
Int. J. Heat Mass. Transfer
,
36
(
10
), pp.
2675
2684
.10.1016/S0017-9310(05)80204-2
28.
Lee
,
J.
, and
Lee
,
S. J.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.10.1080/089161599269753
29.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
J. Heat Trans-T ASME
,
127
(
5
), pp.
544
552
.10.1115/1.1861921
30.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
31.
Donaldson
,
C. D.
, and
Snedeker
,
R. S.
,
1971
, “
Study of Free Jet Impingement. 1. Mean Properties
,”
J. Fluid Mech.
,
45
(
02
), p.
281
. +.10.1017/S0022112071000053
32.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment. 2. Examination of Turbulence Models
,”
Int. J. Heat Mass. Transfer
,
36
(
10
), pp.
2685
2697
.10.1016/S0017-9310(05)80205-4
33.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
,
20
(
1
), pp.
1
9
.10.1016/S0142-727X(98)10040-1
34.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
J. Heat Trans-T ASME
,
111
(
4
), pp.
1096
1098
.10.1115/1.3250776
35.
Hadziabdic
,
M.
, and
Hanjalic
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.10.1017/S002211200700955X
36.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat-Transfer to Confined, Impinging Arrays of Axisymmetrical Air-Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
37.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.10.1016/0142-727X(96)00040-9
38.
Rovira
,
M.
,
Engvall
,
K.
, and
Duwig
,
C.
,
2020
, “
Review and Numerical Investigation of the Mean Flow Features of a Round Turbulent Jet in Counterflow
,”
Phys. Fluids
,
32
(
4
), p.
045102
.10.1063/5.0003239
39.
Koller-Milojevie
,
D.
, and
Schneider
,
W.
,
1993
, “
Free and Confined Jets at Low Reynolds Numbers
,”
Fluid Dyn. Res.
,
12
(
6
), pp.
307
322
.10.1016/0169-5983(93)90033-7
40.
Nadeau
,
P.
,
Berk
,
D.
, and
Munz
,
R. J.
,
2001
, “
Mixing in a Cross-Flow-Impinging Jet Reactor
,”
AICHE J.
,
47
(
3
), pp.
536
544
.10.1002/aic.690470304
41.
Zhao
,
Y.
, and
Brodkey
,
R. S.
,
1998
, “
Averaged and Time-Resolved, Full-Field (Three-Dimensional), Measurements of Unsteady Opposed Jets
,”
Can. J. Chem. Eng.
,
76
(
3
), pp.
536
545
.10.1002/cjce.5450760326
42.
Pawlowski
,
R. P.
,
Salinger
,
A. G.
,
Shadid
,
J. N.
, and
Mountziaris
,
T. J.
,
2006
, “
Bifurcation and Stability Analysis of Laminar Isothermal Counterflowing Jets
,”
J. Fluid Mech.
,
551
(
-1
), pp.
117
139
.10.1017/S0022112005008396
43.
Li
,
W.-F.
,
Yao
,
T.-L.
,
Liu
,
H.-F.
, and
Wang
,
F.-C.
,
2011
, “
Experimental Investigation of Flow Regimes of Axisymmetric and Planar Opposed Jets
,”
AICHE J.
,
57
(
6
), pp.
1434
1445
.10.1002/aic.12369
44.
Nadeau
,
P.
,
Berk
,
D.
, and
Munz
,
R. J.
,
2003
, “
Ammonium Chloride Aerosol Nucleation and Growth in a Cross-Flow Impinging Jet Reactor
,”
Aerosol Sci. Tech.
,
37
(
1
), pp.
82
95
.10.1080/02786820300896
45.
Kartaev
,
EV.
,
Emel'kin
,
V. A.
,
Ktalkherman
,
MG.
,
Kuz'min
,
V. I.
,
Aul'chenko
,
S. M.
, and
Vashenko
,
S. P.
,
2014
, “
Analysis of Mixing of Impinging Radial Jets With Crossflow in the Regime of Counter Flow Jet Formation
,”
Chem. Eng. Sci.
,
119
, pp.
1
9
.10.1016/j.ces.2014.07.062
46.
Kartaev
,
E. V.
,
Emelkin
,
V. A.
,
Ktalkherman
,
M. G.
,
Aulchenko
,
S. M.
, and
Vashenko
,
S. P.
,
2018
, “
Upstream Penetration Behavior of the Developed Counter Flow Jet Resulting From Multiple Jet Impingement in the Crossflow of Cylindrical Duct
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1163
1178
.10.1016/j.ijheatmasstransfer.2017.09.111
47.
Kartaev
,
E. V.
,
Emelkin
,
V. A.
,
Ktalkherman
,
M. G.
,
Aulchenko
,
S. M.
,
Vashenko
,
S. P.
, and
Kuzmin
,
V. I.
,
2015
, “
Formation of Counter Flow Jet Resulting From Impingement of Multiple Jets Radially Injected in a Crossflow
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
310
321
.10.1016/j.expthermflusci.2015.05.009
48.
Stan
,
G.
,
2000
, “
Fundamental Characteristics of Turbulent Opposed Impinging Jets
,” UWSpace.
49.
Stan
,
G.
, and
Johnson
,
D. A.
,
2001
, “
Experimental and Numerical Analysis of Turbulent Opposed Impinging Jets
,”
AIAA J.
,
39
(
10
), pp.
1901
1908
.10.2514/2.1205
50.
Im
,
Y. H.
,
Huh
,
K. Y.
, and
Kim
,
K.-Y.
,
2002
, “
Analysis of Impinging and Countercurrent Stagnating Flows by Reynolds Stress Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
706
718
.10.1115/1.1493815
51.
Korusoy
,
E.
, and
Whitelaw
,
J. H.
,
2004
, “
Inviscid, Laminar and Turbulent Opposed Flows
,”
Int. J. Numer. Methods Fluids
,
46
(
11
), pp.
1069
1098
.10.1002/fld.783
52.
Johansson
,
P. S.
, and
Andersson
,
H. I.
,
2005
, “
Direct Numerical Simulation of Two Opposing Wall Jets
,”
Phys Fluids
,
17
(
5
), p.
055109
.10.1063/1.1920627
53.
Lindstedt
,
R. P.
,
Luff
,
D. S.
, and
Whitelaw
,
J. H.
,
2005
, “
Velocity and Strain-Rate Characteristics of Opposed Isothermal Flows
,”
Turbul. Combust.
,
74
(
2
), pp.
169
194
.10.1007/s10494-005-4130-6
54.
ANSYS, Inc.
,
2021
, “
ANSYS Fluent Theory Guide Release 2021 R2
,”
Software Manual
,
ANSYS, Inc
,
Canonsburg, PA
.
55.
Hubbard
,
J. A.
,
Hansen
,
M. A.
,
Kirsch
,
J. R.
,
Hewson
,
J. C.
, and
Domino
,
S. P.
,
2022
, “
Medium-Scale Methanol Pool Fire Model Validation
,”
J. Heat Trans-T ASME
,
144
(
6
)10.1115/1.4054204
56.
Aro
,
C.
,
Black
,
A.
,
Brown
,
A.
,
Burns
,
S.
,
Cochran
,
B.
,
Domino
,
S.
,
Evans
,
G.
, et al.,
2018
,
Sierra Fuego Theory Manual – Version 4.50
,
Sandia National Laboratories
,
Albuquerque, New Mexico
.
57.
Domino
,
S.
,
Moen
,
C. D.
,
Burns
,
S. P.
, and
Evans
,
G. H.
,
2003
, “
SIERRA/Fuego: A Multi-Mechanics Fire Environment Simulation Tool
,”
AIAA
Paper No. 2003-149.10.2514/6.2003-149
58.
Domino
,
S.
,
Hewson
,
J.
,
Knaus
,
R.
, and
Hansen
,
M.
,
2021
, “
Predicting Large-Scale Pool Fire Dynamics Using an Unsteady Flamelet- and Large-Eddy Simulation-Based Model Suite
,”
Phys. Fluids
,
33
, p.
085109
.10.1063/5.0060267
59.
Domino
,
S. P.
,
Sakievich
,
P.
, and
Barone
,
M.
,
2019
, “
An Assessment of Atypical Mesh Topologies for low-Mach Large-Eddy Simulation
,”
Comput Fluids
,
179
, pp.
655
669
.10.1016/j.compfluid.2018.12.002
60.
Sandia National Laboratories,
2022
, Advanced Simulation and Computing: Integrated Codes, Sandia National Laboratories, Albuquerque, NM, accessed Feb. 23, 2023, https://www.sandia.gov/asc/advanced-simulation-and-computing/integrated-codes/
61.
ANSYS
,
2020
,
ANSYS Chemkin-Pro Theory Manual - Release 2020 R1
,
ANSYS, Inc
,
Canonsburg, PA
.
62.
Goodwin, D. G., Moffat, H. K., Schoegl, I., Speth, R. L., and Weber, B. W.,
2022
, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” Version 2.6.0, accessed Feb. 23, 2023, https://cantera.org/
63.
Domino
,
S. P.
,
2006
, “
Toward Verification of Formal Time Accuracy for a Family of ap- Proximate Projection Methods Using the Method of Manufactured Solutions
,”
Studying Turbulence Using Numerical Simulation Databases – XI
,
P.
Moin
, and
N.
Mansour
, eds.,
Stanford Center for Turbulence Research
, Stanford, CA, pp.
163
177
.
64.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge; New York
.
65.
Menter
,
F. R.
,
2015
,
Best Practice: Scale Resolving Simulations in ANSYS CFD
,
ANSYS
,
Canonsburg, PA
.
66.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1994
, “
Realizability Conditions for the Turbulent Stress Tensor in Large-Eddy Simulation
,”
J. Fluid Mech.
,
278
, pp.
351
362
.10.1017/S0022112094003745
67.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2007
, “
Turbulent Schmidt Numbers for CFD Analysis With Various Types of Flowfield
,”
Atmos. Environ.
,
41
(
37
), pp.
8091
8099
.10.1016/j.atmosenv.2007.06.054
68.
Rehage
,
H.
, and
Kind
,
M.
,
2021
, “
The First Damköhler Number and Its Importance for Characterizing the Influence of Mixing on Competitive Chemical Reactions
,”
Chem. Eng. Sci.
,
229
, p.
116007
.10.1016/j.ces.2020.116007
You do not currently have access to this content.