Abstract

This paper studied the influence of the Reynolds number on lift, power, and efficiency of a three-bladed cycloidal rotor in hover. In a parameter study, Reynolds numbers from 10,000 to 600,000 were investigated. The fluid mechanics were solved using incompressible 2D unsteady Reynolds-averaged Navier–Stokes (URANS) computational fluid dynamics (CFD). The CFD model was first carefully validated using experimental data for a pitching airfoil undergoing dynamic stall. The model was then verified to reproduce the shapes of both the force and power curves and the wake flow of a landmark cyclorotor experimental study. Two different flow regimes were identified: for the first regime Re ranged from 10,000 to 100,000 and two dynamic flow separations occurred, the first at maximum pitch angle and bottommost position of the blade and the second shortly afterwards. The second flow regime had Re from 200,000 to 600,000 and avoided the first separation due to the increased Reynolds number. Both separations were visible in the flow as well as in the azimuthal lift distribution. Regardless of the flow regime, rotation averaged lift and power followed the predictions of momentum theory, except for Re of 500,000. At this Re, a significant drop in power was observed and corresponds to findings of a 20-year old experimental study which were at the time classified as possibly wrong. This particular behavior at Re of 500,000 is explained by a change in shape of the downwash, which avoids flow separation as the blade starts to travel upwards.

References

1.
IATA
, “
History—Growth and Development
,” accessed Feb. 12, 2023, https://www.iata.org/en/about/history/history-growth-and-development/
2.
Reuter
,
F.
,
2021
, “
The ROADMAP to Scalable Urban Air Mobility: White Paper 2.0
,” White Paper 1,
Volocopter
,
Bruchsal, Germany
, accessed Feb. 12, 2023, http://shorturl.at/inwxW
3.
Boschma
,
J.
,
2001
, “
Modern Aviation Applications for Cycloidal Propulsion
,”
AIAA
Paper No. 2001-5267
.10.2514/6.2001-5267
4.
Walther
,
C. M.
,
Coleman
,
D.
, and
Moble
,
B.
,
2018
, “
Understanding Unsteady Aerodynamics of Cycloidal Rotors in Hover at Ultra-Low Reynolds Numbers
,”
AIAA
Paper No. 2018-0080
.10.2514/6.2018-0080
5.
Yun
,
C. Y.
,
Park
,
I. K.
,
Lee
,
H. Y.
,
Jung
,
J. S.
,
Hwang
,
I. S.
, and
Kim
,
S. J.
,
2007
, “
Design of a New Unmanned Aerial Vehicle Cyclocopter
,”
J. Am. Helicopter Soc.
,
52
(
1
), pp.
24
35
.10.4050/JAHS.52.24
6.
Iosilevskii
,
G.
, and
Levy
,
Y.
,
2006
, “
Experimental and Numerical Study of Cyclogiro Aerodynamics
,”
AIAA J.
,
44
(
12
), pp.
2866
2870
.10.2514/1.8227
7.
Siegel
,
S.
,
Seidel
,
J.
,
Cohen
,
K.
, and
McLaughlin
,
T.
,
2007
, “
A Cycloidal Propeller Using Dynamic Lift
,”
AIAA
Paper No. 2007-4232
.10.2514/6.2007-4232
8.
Tang
,
J.
,
Hu
,
Y.
,
Song
,
B.
, and
Yang
,
H.
,
2017
, “
Unsteady Aerodynamic Optimization of Airfoil for Cycloidal Propellers Based on Surrogate Model
,”
J. Aircr.
,
54
(
4
), pp.
1241
1256
.10.2514/1.C033649
9.
Xisto
,
C. M.
,
Leger
,
J. A.
,
Páscoa
,
J. C.
,
Gagnon
,
L.
,
Masarati
,
P.
,
Angeli
,
D.
, and
Dumas
,
A.
,
2017
, “
Parametric Analysis of a Large-Scale Cycloidal Rotor in Hovering Conditions
,”
J. Aerosp. Eng.
,
30
(
1
), pp. 9–20.10.1061/(ASCE)AS.1943-5525.0000658
10.
Seifert
,
J.
, and
Luftfahrt, E. V.
,
B.
,
2009
, “
Aerodynamic Analysis of a New Hybrid Rotor
,”
Proceedings of Deutscher Luft Und Raumfahrt Kongress
, Aachen, Germany, Sept., pp.
1215
1222
.
11.
Benedict
,
M.
,
Jarugumilli
,
T.
,
Lakshminarayan
,
V.
, and
Chopra
,
I.
,
2014
, “
Effect of Flow Curvature on Forward Flight Performance of a Micro-Air-Vehicle-Scale Cycloidal-Rotor
,”
AIAA J.
,
52
(
6
), pp.
1159
1169
.10.2514/1.J052065
12.
Zimmer
,
F.
,
2021
, “
Investigation of the Reynolds Number On The Performance Of A Cycloidal Rotor
,” Bachelor's thesis,
University of Stuttgart
,
Stuttgart
.
13.
Hu
,
Y.
,
Du
,
F.
, and
Zhang
,
H. L.
,
2016
, “
Investigation of Unsteady Aerodynamics Effects in Cycloidal Rotor Using Rans Solver
,”
Aeronaut. J.
,
120
(
1228
), pp.
956
970
.10.1017/aer.2016.38
14.
Dekterev
,
A.
,
Dekterev
,
A.
,
Dekterev
,
D.
, and
Goryunov
,
Y.
,
2018
, “
Investigation of the Effects of End Faces Design on Parameters of Cycloidal Rotor
,”
J. Phys.: Conf. Ser.
,
1105
, p.
012029
.10.1088/1742-6596/1105/1/012029
15.
Gagnon
,
L.
,
Morandini
,
M.
,
Quaranta
,
G.
,
Muscarello
,
V.
, and
Masarati
,
P.
,
2016
, “
Aerodynamic Models for Cycloidal Rotor Analysis
,”
AEAT
,
88
(
2
), pp.
215
231
.10.1108/AEAT-02-2015-0047
16.
Hu
,
Y.
,
Fu
,
X.
,
Zhang
,
H.
,
Wang
,
G.
, and
Farhat
,
H.
,
2019
, “
Effects of Blade Aspect Ratio and Taper Ratio on Hovering Performance of Cycloidal Rotor With Large Blade Pitching Amplitude
,”
Chin. J. Aeronaut.
,
32
(
5
), pp.
1121
1135
.10.1016/j.cja.2019.01.015
17.
Yang
,
K.
,
2010
, “
Aerodynamic Analysis of an MAV-Scale Cycloidal Rotor System Using A Stuctured Overset RANS Solver
,” Master's thesis,
University of Maryland
,
College Park, MD
.
18.
Donners
,
L.
,
2022
, “
Experimental Validation of a Cycloidal Rotor URANS CFD Model and Geometric Parameter Optimization
,” Bachelor's thesis,
University of Stuttgart
,
Stuttgart
.
19.
Gagnon
,
L.
,
Quaranta
,
G.
,
Schwaiger
,
M.
, and
Wills
,
D.
,
2018
, “
Aerodynamic Analysis of an Unmanned Cyclogiro Aircraft
,”
SAE
Paper No. 2018-01-6005.10.4271/2018-01-6005
20.
Gagnon
,
L.
,
Quaranta
,
G.
, and
Schwaiger
,
M.
,
2019
, “
Open-Source 3D CFD of a Quadrotor Cyclogyro Aircraft
,”
OpenFOAM®: Selected Papers of the 11th Workshop
, J. M. Nóbrega, and H. Jasak, eds.,
Springer International Publishing
,
Cham
, Switzerland, pp.
373
388
.
21.
Adams
,
Z.
,
Benedict
,
M.
,
Hrishikeshavan
,
V.
, and
Chopra
,
I.
,
2013
, “
Design, Development, and Flight Test of a Small-Scale Cyclogyro UAV Utilizing a Novel Cam-Based Passive Blade Pitching Mechanism
,”
Int. J. Micro Air Veh.
,
5
(
2
), pp.
145
162
.10.1260/1756-8293.5.2.145
22.
Dykas
,
S.
,
Majkut
,
M.
,
Smołka
,
K.
,
Strozik
,
M.
,
Chmielniak
,
T.
, and
Staśko
,
T.
,
2018
, “
Numerical and Experimental Investigation of the Fan With Cycloidal Rotor
,”
Mech. Mech. Eng.
,
22
(
2
), pp.
447
454
.10.2478/mme-2018-0036
23.
Sirohi
,
J.
,
Parsons
,
E.
, and
Chopra
,
I.
,
2007
, “
Hover Performance of a Cycloidal Rotor for a Micro Air Vehicle
,”
J. Am. Helicopter Soc.
,
52
(
3
), pp.
263
279
.10.4050/JAHS.52.263
24.
Kellen
,
A. J.
,
2019
, “
Performance Measurements on a UAV-Scale Cycloidal Rotor in Hover
,” Master's thesis,
Texas A & M University
, College Station,
TX
.
25.
Gibbens
,
R.
,
Boschma
,
J.
, and
Sullivan
,
C.
,
1999
, “
Construction and Testing of a New Aircraft Cycloidal Propeller
,”
13th Lighter-Than-Air Systems Technology Conference
,
American Institute of Aeronautics and Astronautics
,
Norfolk, VA
, June 28–July 1, pp.
132
140
.
26.
McNabb
,
M.
,
2001
, “
Development of a Cycloidal Propulsion Computer Model and Comparison with Experiment
,” M.S. thesis,
Mississippi State University
,
Mississippi State, MS
.
27.
Singh
,
K.
, and
Páscoa
,
J. C.
,
2019
, “
Numerical Modeling of Stall and Poststall Events of a Single Pitching Blade of a Cycloidal Rotor
,”
ASME J. Fluids Eng.
,
141
(
1
), p. 011103.10.1115/1.4040302
28.
Greenshields
,
C.
, and
Weller
,
H.
,
2022
,
Notes on Computational Fluid Dynamics: General Principles
,
CFD Direct Ltd
.,
Reading, UK
.
29.
Borello
,
D.
,
Corsini
,
A.
,
Delibra
,
G.
,
Fiorito
,
M.
, and
Sheard
,
A. G.
,
2013
, “
Large-Eddy Simulation of a Tunnel Ventilation Fan
,”
ASME J. Fluids Eng.
,
135
(
7
), p. 071102.10.1115/1.4023686
30.
Mavriplis
,
D. J.
,
Vassberg
,
J. C.
,
Tinoco
,
E. N.
,
Mani
,
M.
,
Brodersen
,
O. P.
,
Eisfeld
,
B.
,
Wahls
,
R. A.
, et al.,
2009
, “
Grid Quality and Resolution Issues From the Drag Prediction Workshop Series
,”
J. Aircr.
,
46
(
3
), pp.
935
950
.10.2514/1.39201
31.
Farrell
,
P. E.
, and
Maddison
,
J. R.
,
2011
, “
Conservative Interpolation Between Volume Meshes by Local Galerkin Projection
,”
CMAME
,
200
(
1–4
), pp.
89
100
.10.1016/j.cma.2010.07.015
32.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.10.1017/S0022112004009851
33.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries, La Cañada
,
CA
.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
35.
Langtry
,
R.
, and
Menter
,
F. R.
,
2005
, “
Transition Modeling for General Cfd Applications in Aeronautics
,”
AIAA
Paper No. 2005-522
.10.2514/6.2005-522
36.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
37.
Ouro
,
P.
,
Stoesser
,
T.
, and
Ramírez
,
L.
,
2018
, “
Effect of Blade Cambering on Dynamic Stall in View of Designing Vertical Axis Turbines
,”
ASME J. Fluids Eng.
,
140
(
6
), p. 061104.10.1115/1.4039235
38.
Geng
,
F.
,
Kalkman
,
I.
,
Suiker
,
A.
, and
Blocken
,
B.
,
2018
, “
Sensitivity Analysis of Airfoil Aerodynamics During Pitching Motion at a Reynolds Number of 1.35 × 105
,”
J. Wind Eng. Ind. Aerodyn.
,
183
, pp.
315
332
.10.1016/j.jweia.2018.11.009
39.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.10.1016/j.compfluid.2010.05.004
40.
McNaughton
,
J.
,
Billard
,
F.
, and
Revell
,
A.
,
2014
, “
Turbulence Modelling of Low Reynolds Number Flow Effects Around a Vertical Axis Turbine at a Range of Tip-Speed Ratios
,”
J. Fluids Struct.
,
47
, pp.
124
138
.10.1016/j.jfluidstructs.2013.12.014
41.
Contel
,
A.
,
2016
, “
Detached Eddy Simulation of a Wall-Mounted Cylinder Flow
,” Bachelor thesis,
TU Muenchen
,
Munich, Germany
.
42.
Halder
,
A.
,
Walther
,
C.
, and
Benedict
,
M.
,
2017
, “
Unsteady Hydrodynamic Modeling of a Cycloidal Propeller
,”
Fifth International Symposium on Marine Propulsion smp'17
,
Espoo, Finland
, June.https://www.marinepropulsors.com/proceedings/2017/MB3-2.pdf
You do not currently have access to this content.