Abstract

A direct numerical simulation is used to solve the two-dimensional plane Poiseuille flow for three different stability cases; specifically, they are a supercritical case at a Reynolds number of 10,000, a critical-stable case at a Reynolds number of 5772.22, and subcritical case at a Reynolds number of 1000. The perturbations are developed using the eigenfunctions of Orr–Sommerfeld equation's solution. In many applications, the flow was required to be fully laminar. As a result, a model-based controller is developed for stabilizing the flow field using unsteady strong suction and blowing technique, through distributed slots on the two walls of the channel. This technique is introduced to cancel the propagating wave in the boundary-layers near the two walls. Promising results are achieved for the unstable and critical-stable cases. The stable case is tested. Slight improvements in its growth rate are recorded. In turn, a faster response for the flow field is achieved.

References

1.
Drazin
,
P. G.
,
2002
,
Introduction to Hydrodynamic Stability
, Vol.
32
,
Cambridge University Press
, New York.
2.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
, Cambridge, UK.
3.
Sengupta
,
T.
, and
Poinsot
,
T.
,
2010
,
Instabilities of Flows: With and Without Heat Transfer and Chemical Reaction
, Vol.
517
,
Springer Science & Business Media
, Wien/New York.
4.
Tollmien
,
W.
, and
Miner
,
D. M.
,
1931
, “
The Production of Turbulence,” National Advisory Committee for Aeronautics
,” Report No. NACA-TM-609.
5.
Schlichting
,
H.
,
1933
, “
Zur Enstehung Der Turbulenz Bei Der Plattenströmung
,”
Nachr. Ges. Wiss. Göettingen, Math.-Phys. Kl.
,
1933
, pp.
181
208
.
6.
Heisenberg
,
W.
,
1985
, “
Über Stabilität Und Turbulenz Von Flüssigkeitsströmen
,”
Original Scientific Papers Wissenschaftliche Originalarbeiten
,
Springer
, Berlin, Heidelberg, pp.
31
81
.10.1007/978-3-642-61659-4_5
7.
Sommerfeld
,
A.
,
1909
, “
Ein Beitrag Zur Hydrodynamischen Erklärung Der Turbulenten Flüssigkeitsbewegungen
,”
Atti Del IV Congresso Internazionale Dei Matematici
, Rome, Italy, pp.
116
124
.
8.
Orr
,
W. M.
,
1907
, “
The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II: A Viscous Liquid
,”
Proc. R. Ir. Acad., Sect. A
,
27
, pp.
69
138
.https://www.jstor.org/stable/20490591
9.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.10.1017/S0022112071002842
10.
Squire
,
H. B.
,
1933
, “
On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow Between Parallel Walls
,”
Proc. R. Soc. London, Ser. A
,
142
(
847
), pp.
621
628
.10.1098/rspa.1933.0193
11.
Joslin
,
R.
,
2001
, “
The Use of DNS in Flow Control
,”
AIAA
Paper No. 2001-2544.10.2514/6.2001-2544
12.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.10.1017/S0022112094000431
13.
Joshi
,
S. S.
,
Speyer
,
J. L.
, and
Kim
,
J.
,
1997
, “
A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
332
(
1
), pp.
157
184
.10.1017/S0022112096003746
14.
Joshi
,
S. S.
,
1996
, “
A Systems Theory Approach to the Control of Plane Poiseuille Flow
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
15.
Ray
,
R.
,
Samad
,
A.
, and
Chaudhury
,
T.
,
2000
, “
Low Reynolds Number Stability of MHD Plane Poiseuille Flow of an Oldroyd Fluid
,”
Int. J. Math. Math. Sci.
,
23
(
9
), pp.
617
625
.10.1155/S0161171200002040
16.
Pitman
,
M.
, and
Lucey
,
A.
,
2010
, “
Stability of Plane-Poiseuille Flow Interacting With a Finite Compliant Panel
,”
Proceedings of the 17th Australasian Fluid Mechanics Conference
,
Auckland, New Zealand
, Dec. 5–9, pp.
563
566
.https://www.researchgate.net/publication/268203497_Stability_of_plane-Poiseuille_flow_interacting_with_a_finite_compliant_panel
17.
Araya
,
G.
,
Leonardi
,
S.
, and
Castillo
,
L.
,
2011
, “
Steady and Time-Periodic Blowing/Suction Perturbations in a Turbulent Channel Flow
,”
Phys. D
,
240
(
1
), pp.
59
77
.10.1016/j.physd.2010.08.006
18.
Kucala
,
A.
, and
Biringen
,
S.
,
2014
, “
Spatial Simulation of Channel Flow Instability and Control
,”
J. Fluid Mech.
,
738
, pp.
105
123
.10.1017/jfm.2013.532
19.
Zhang
,
W.
,
Jiang
,
Y.
,
Li
,
L.
, and
Chen
,
G.
,
2016
, “
Effects of Wall Suction/Blowing on Two-Dimensional Flow Past a Confined Square Cylinder
,”
SpringerPlus
,
5
(
1
), pp.
1
9
.
20.
Damaren
,
C. J.
,
2016
, “
Laminar–Turbulent Transition Control Using Passivity Analysis of the Orr–Sommerfeld Equation
,”
J. Guid., Control, Dyn.
,
39
(
7
), pp.
1602
1613
.10.2514/1.G001763
21.
Xu
,
L.
, and
Rusak
,
Z.
,
2022
, “
The Stability of Plane Poiseuille Flow in a Finite-Length Channel
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051302
.10.1115/1.4052643
22.
Xu
,
L.
, and
Zhang
,
Y.
,
2022
, “
Adjoint Analysis of Plane Poiseuille Flow Global and Convective Stability
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111301
.10.1115/1.4054958
23.
Denaro
,
F.
,
2005
, “
Time-Accurate Intermediate Boundary Conditions for Large Eddy Simulations Based on Projection Methods
,”
Int. J. Numer. Methods Fluids
,
48
(
8
), pp.
869
908
.10.1002/fld.965
24.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1996
, “
Unsteadiness and Convective Instabilities in Two-Dimensional Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
321
, pp.
157
187
.10.1017/S0022112096007689
25.
DE Donati
,
E.
,
2016
,
Stability of the Flow in a Channel With Grooved Wall
, Polytech Milano.
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, Vol.
58
,
Hemisphere Publishing Corporation
,
New York
.
27.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1983
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Elsevier
, Pergamon, pp.
54
73
.10.1016/B978-0-08-030937-8.50013-1
28.
Gresho
,
P. M.
, and
Sani
,
R. L.
,
1987
, “
On Pressure Boundary Conditions for the Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
7
(
10
), pp.
1111
1145
.10.1002/fld.1650071008
29.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
, McGraw-Hill, New York.
30.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
, Harlow, UK.
31.
Gaster
,
M.
,
1962
, “
A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability
,”
J. Fluid Mech.
,
14
(
2
), pp.
222
224
.10.1017/S0022112062001184
32.
Schmid
,
P. J.
,
Henningson
,
D. S.
, and
Jankowski
,
D.
,
2002
, “
Stability and Transition in Shear Flows Applied Mathematical Sciences, Vol. 142
,”
Appl. Mech. Rev.
,
55
(
3
), pp.
B57
B59
.10.1115/1.1470687
33.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
34.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
,
Siam
, Philadelphia, PA.
35.
Ghaddar
,
N.
,
Korczak
,
K.
,
Mikic
,
B.
, and
Patera
,
A.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
99
127
.10.1017/S0022112086002227
36.
Fortin
,
A.
,
Jardak
,
M.
,
Gervais
,
J.
, and
Pierre
,
R.
,
1994
, “
Old and New Results on the Two-Dimensional Poiseuille Flow
,”
J. Comput. Phys.
,
115
(
2
), pp.
455
469
.10.1006/jcph.1994.1210
37.
Nishioka
,
M.
,
Iid A
,
S.
, and
Ichikawa
,
Y.
,
1975
, “
An Experimental Investigation of the Stability of Plane Poiseuille Flow
,”
J. Fluid Mech.
,
72
(
4
), pp.
731
751
.10.1017/S0022112075003254
You do not currently have access to this content.