Abstract

We conducted a large eddy simulation (LES) of cavitating turbulent flow around a Clark-Y11.7% hydrofoil at an angle of attack of 8 deg. We focused on the improvement of the reproducibility of hydrofoil performance under cavitating conditions when considering the unsteadiness of the flow field sufficiently by LES. A homogeneous cavitation model was adopted. The subgrid-scale model for LES was the one-equation dynamic model. The unsteady phenomena such as cavity oscillation and cloud cavity shedding accompanied by the reentrant jet were simulated. Large-scale spanwise vortices were also captured, which occurred intermittently from the onset of the sheet cavity. Then, the flow inside the sheet cavity was de-accelerated and the streamlines went around the sheet cavity. Streamline curvature formed a separation bubble behind the sheet cavity accompanied by a low-pressure region. Thus, the sheet cavity length was sufficient and the reproducibility of the pressure distribution around the hydrofoil and lift coefficient were improved.

References

1.
Kato
,
C.
,
2011
, “
Industry-University Collaborative Project on Numerical Predictions of Cavitating Flows in Hydraulic Machinery: Part. 1—Benchmark Test on Cavitating Hydrofoils
,”
ASME
Paper No. AJK2011-06084.10.1115/AJK2011-06084
2.
Kato
,
C.
,
2011
, “
Final Report of Turbomachinery Society of Japan Consortium Project—Advancement of CFD Prediction of Cavitation in Turbomachinery
,” Turbomachinery Society of Japan, Tokyo, Japan, pp.
1
9
, Technical Report (in Japanese).
3.
Kinnas
,
S. A.
, and
Fine
,
N. E.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
181
.10.1017/S0022112093002071
4.
Kim
,
Y. G.
,
1994
, “
Surface Panel Method for Prediction of Flow Around a 3-D Steady or Unsteady Cavitating Hydrofoil
,”
Proceedings of the 2nd International Symposium on Cavitation
,
Tokyo, Japan
, pp.
113
120
.
5.
Chen
,
Y.
, and
Heister
,
S. D.
,
1994
, “
A Numerical Treatment for Attached Cavitation
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
613
618
.10.1115/1.2910321
6.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
,
1997
, “
Numerical Modeling of the Thermodynamic Effects of Cavitation
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
420
427
.10.1115/1.2819150
7.
Tokumasu
,
T.
,
Sekino
,
Y.
, and
Kamijo
,
K.
,
2004
, “
The Numerical Analysis of the Effect of Flow Properties on the Thermodynamic Effect of Cavitation
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
47
(
156
), pp.
146
152
.10.2322/tjsass.47.146
8.
Wu
,
J.
,
Utturkar
,
Y.
,
Senocak
,
I.
,
Shyy
,
W.
, and
Arakere
,
N.
,
2003
, “
Impact of Turbulence and Compressibility Modeling on Three-Dimensional Cavitating Flow Computations
,”
AIAA
Paper No. 2003-4264.10.2514/6.2003-4264
9.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.
10.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
11.
Singhal
,
A. K.
,
Vaidya
,
N.
, and
Leonard
,
A. D.
,
1997
, “
Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model of Phase Change
,”
Proceeding of ASME FEDSM’97
,
Vancouver, BC, Canada
, June 22–26, ASME Paper No. FEDSM'97-3272.
12.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,”
J. Comput. Phys.
,
176
(
2
), pp.
363
383
.10.1006/jcph.2002.6992
13.
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Time-Dependent Turbulent Cavitating Flow Computations With Interfacial Transport and Filter-Based Models
,”
Int. J. Numer. Methods Fluids
,
49
(
7
), pp.
739
761
.10.1002/fld.1047
14.
Srinivasan
,
V.
,
Salazar
,
A. J.
, and
Saito
,
K.
,
2009
, “
Numerical Simulation of Cavitation Dynamics Using a Cavitation-Induced-Momentum-Defect (CIMD) Correction Approach
,”
Appl. Math. Modell.
,
33
(
3
), pp.
1529
1559
.10.1016/j.apm.2008.02.005
15.
Wosnik
,
M.
,
Qin
,
Q.
, and
Arndt
,
R. E. A.
,
2006
, “
Identification of Large Scale Structures in the Wake of Cavitating Hydrofoils Using LES and Time-Resolved PIV
,”
Proceeding of 6th International Symposium on Cavitation (CAV2006)
,
Wageningen, The Netherlands
, Sept. 11–15, pp.
1
12
.https://www.researchgate.net/publication/240615666_IDENTIFICATION_OF_LARGE_SCALE_STRUCTURES_IN_THE_WAKE_OF_CAVITATING_HYDROFOILS_USING_LES_AND_TIME-RESOLVED_PIV
16.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Modell.
,
31
(
3
), pp.
417
447
.10.1016/j.apm.2005.11.019
17.
Shams
,
E.
, and
Apte
,
S.
,
2009
, “
Large Eddy Simulation of Cavitation Inception in a High Speed Flow Over an Open Cavity
,”
Proceeding of 7th International Symposium on Cavitation
(
CAV2009
),
Ann Arbor, MI
, Aug. 16–20, pp.
1
16
.https://deepblue.lib.umich.edu/handle/2027.42/84268
18.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), pp.
1
11
.10.1115/1.4001971
19.
Suzuki
,
T.
,
Yamade
,
Y.
, and
Kato
,
C.
,
2011
, “
Accuracy Validation of Cavitation Performance Prediction for Single Hydrofoil by LES
,”
Seisan Kenkyu
,
63
(
1
), pp.
55
60
.10.11188/seisankenkyu.63.55
20.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2015
, “
A Numerical Method to Simulate Turbulent Cavitating Flows
,”
Int. J. Multiphase Flow
,
70
, pp.
22
34
.10.1016/j.ijmultiphaseflow.2014.11.009
21.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
22.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
23.
Okabayashi
,
K.
,
2011
, “
Study on the Development of Cavitation LES Model Considering Elementary Vortices in Turbulent Flow
,” Ph.D. thesis,
Osaka University
,
Suita, Osaka, Japan
, pp.
1
141
(in Japanese).
24.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An LES Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.10.1016/j.ijmultiphaseflow.2017.08.013
25.
Okabayashi
,
K.
,
Inaoka
,
K.
,
Luo
,
W.
, and
Kajishima
,
T.
,
2019
, “
The Unsteady Simulation for Turbulent Cavitating Flow Around a Hydrofoil at a Low Angle of Attack
,”
Trans. Jpn. Soc. Mech. Eng.
,
85
(
876
), pp.
1
17
(in Japanese).10.1299/transjsme.19-00124
26.
Kunz
,
R. F.
,
Lindau
,
J. W.
,
Kaday
,
T. A.
, and
Peltier
,
L. J.
,
2003
, “
Unsteady RANS and Detached Eddy Simulations of Cavitating Flow Over a Hydrofoil
,”
Proceeding of the 5th International Symposium on Cavitation (CAV2003)
, Osaka, Japan, Nov. 1–4, Paper No. Cav03-OS-1-12.
27.
Ugajin
,
H.
,
Kawai
,
M.
,
Okita
,
K.
,
Ohta
,
T.
,
Kajishima
,
T.
,
Nakano
,
M.
, and
Tomaru
,
H.
,
2007
, “
Unsteady RANS and Detached Eddy Simulations of Cavitating Flow Over a Hydrofoil
,”
AIAA
Paper No. 2007-5535.10.2514/6.2007-5535
28.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2009
, “
An Examination of Thermal Modeling Affects on the Numerical Prediction of Large-Scale Cavitating Fluid Flows
,”
Proceeding of the 7th International Symposium on Cavitation (CAV2009)
,
Ann Arbor, MI
, Aug. 17–22, Paper No. 137.
29.
Kim
,
S. A.
,
2009
, “
A Numerical Study of Unsteady Cavitation on a Hydrofoil
,”
Proceeding of the 7th International Symposium on Cavitation (CAV2009)
,
Ann Arbor, MI
, Aug. 16–20, Paper No. 56.
30.
Inagaki
,
M.
,
Murata
,
O.
,
Abe
,
K.
, and
Kondoh
,
T.
,
2000
, “
Numerical Prediction of Fluid-Resonant Oscillations at Low Mach Number
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
66
(
649
), pp.
2274
2281
(in Japanese).10.1299/kikaib.66.649_2274
31.
Okita
,
K.
,
2001
, “
Study on the Analysis of the Unsteady Cavitating Flow by Numerical Simulation
,” Ph.D. thesis,
Osaka University
,
Suita, Japan
(in Japanese).
32.
Okita
,
K.
, and
Kajishima
,
T.
,
2002
, “
Numerical Simulation of Unsteady Cavitating Flows Around a Hydrofoil
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
68
(
667
), pp.
637
644
(in Japanese).10.1299/kikaib.68.637
33.
Kajishima
,
T.
, and
Nomachi
,
T.
,
2003
, “
One-Equation Subgrid-Scale Model With Dynamically Determined Energy Production Term
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
69
(
685
), pp.
1996
2001
(in Japanese).10.1299/kikaib.69.1996
34.
Okamoto
,
M.
, and
Shima
,
N.
,
1999
, “
Investigation for the One-Equation-Type Subgrid Model With Eddy-Viscosity Expression Including the Shear-Damping Effect
,”
JSME Int. J., Ser. B
,
42
(
2
), pp.
154
161
.10.1299/jsmeb.42.154
35.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
36.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
37.
Numachi
,
F.
,
Tsunoda
,
K.
, and
Senda
,
I.
,
1949
, “
Cavitation Tests on Six Profiles for Blade Elements
,”
Rep. Inst. High Speed Mech.
,
1
(
1
), pp.
1
16
(in Japanese).
38.
Murai
,
H.
,
Hirata
,
Y.
, and
Mikajima
,
Y.
,
1965
, “
Research on Swept-Back Blades Laid Between Parallel Walls (Report 1)—Experimental Research on Clark-y11.7% Blade With Aspect Ratio of 2.0
,”
Rep. Inst. High Speed Mech.
,
21
(
210
), pp.
183
200
(in Japanese).
39.
Watanabe
,
S.
,
Suefuji
,
N.
,
Yamaoka
,
W.
, and
Furukawa
,
A.
,
2013
, “
Lift and Drag Characteristics of a Cavitating Clark-y 11.7% Hydrofoil
,”
Turbomachinery
,
41
(
7
), pp.
440
446
.10.11458/tsj.41.440
40.
Sagaut
,
P.
,
2004
,
Large Eddy Simulation for Incompressible Flows
, 3rd ed.,
Springer
, Berlin/Heidelberg.
41.
Kawamura
,
T.
, and
Sakoda
,
M.
,
2003
, “
Comparison of Bubble and Sheet Cavitation Models for Simulation of Cavitating Flow Over a Hydrofoil
,”
Proceeding of the 5th International Symposium on Cavitation
(
CAV2003
),
Osaka, Japan
, Nov. 1–4, pp.
1
8
.http://flow.me.es.osakau.ac.jp/cav2003/Papers/Cav03-OS-1-008.pdf
You do not currently have access to this content.