Abstract

Sloshing in fuel tanks is one of the major sources of noise in hybrid and high-end vehicles. During sloshing, the fluid causes impacts on tank walls resulting in their vibration, which further leads to noise, referred to as “hit noise.” Therefore, hit noise generation is a multi-physics phenomenon involving fluid flow, structural response, and acoustic radiation. This paper presents a multi-physics approach to predict hit noise in a rectangular tank. The methodology involves the prediction of fluid loading on tank walls and their structural response using transient fluid and structural analyses which are weakly coupled. Radiated hit noise is predicted using acoustic finite element analysis. Longitudinal periodic excitation is applied to the fluid domain at different frequencies to simulate the sloshing regime which has dominant fluid–structure interactions. Parameters like tank wall pressures, the resulting dynamic acceleration, and radiated sound pressure levels are monitored and validated with the experimental results available in the literature.

References

1.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
, Cambridge, UK.
2.
Wachowski
,
C.
,
Biermann
,
J.
, and
Schala
,
R.
,
2010
, “
Approaches to Analyse and Predict Slosh Noise of Vehicle Fuel Tanks
,”
24th International Conference of Noise and Vibration Engineering (ISMA2010)
, Leuven, Belgium, Sept. 20–22, pp.
4399
4414
.
3.
Golla
,
S. T.
, and
Venkatesham
,
B.
,
2021
, “
Experimental Study on the Effect of Centrally Positioned Vertical Baffles on Sloshing Noise in a Rectangular Tank
,”
Appl. Acoust.
,
176
, p.
107890
.10.1016/j.apacoust.2020.107890
4.
Rebouillat
,
S.
, and
Liksonov
,
D.
,
2010
, “
Fluid–Structure Interaction in Partially Filled Liquid Containers: A Comparative Review of Numerical Approaches
,”
Comput. Fluids
,
39
(
5
), pp.
739
746
.10.1016/j.compfluid.2009.12.010
5.
Chen
,
Y.
, and
Xue
,
M.-A.
,
2018
, “
Numerical Simulation of Liquid Sloshing With Different Filling Levels Using Openfoam and Experimental Validation
,”
Water
,
10
(
12
), p.
1752
.10.3390/w10121752
6.
Eswaran
,
M.
,
Saha
,
U.
, and
Maity
,
D.
,
2009
, “
Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation
,”
Comput. Struct.
,
87
(
3–4
), pp.
198
205
.10.1016/j.compstruc.2008.10.008
7.
Vaishnav
,
D.
,
Dong
,
M.
,
Shah
,
M.
,
Gomez
,
F.
, and
Usman
,
M.
,
2014
, “
Investigation and Development of Fuel Slosh Cae Methodologies
,”
SAE Int. J. Passen. Cars-Mech. Syst.
,
7
(
1
), pp.
278
288
.10.4271/2014-01-1632
8.
Liu
,
D.
,
Tang
,
W.
,
Wang
,
J.
,
Xue
,
H.
, and
Wang
,
K.
,
2016
, “
Comparison of Laminar Model, RANS, LES and VLES for Simulation of Liquid Sloshing
,”
Appl. Ocean Res.
,
59
, pp.
638
649
.10.1016/j.apor.2016.07.012
9.
Kabiri
,
M. M.
,
Nikoomanesh
,
M. R.
,
Danesh
,
P. N.
, and
Goudarzi
,
M. A.
,
2019
, “
Numerical and Experimental Evaluation of Sloshing Wave Force Caused by Dynamic Loads in Liquid Tanks
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111112
.10.1115/1.4043855
10.
Vaziri
,
N.
,
Chern
,
M.-J.
, and
Borthwick
,
A. G.
,
2015
, “
Effects of Base Aspect Ratio on Transient Resonant Fluid Sloshing in a Rectangular Tank: A Numerical Study
,”
Ocean Eng.
,
105
, pp.
112
124
.10.1016/j.oceaneng.2015.06.020
11.
Brizzolara
,
S.
,
Savio
,
L.
,
Viviani
,
M.
,
Chen
,
Y.
,
Temarel
,
P.
,
Couty
,
N.
,
Hoflack
,
S.
,
Diebold
,
L.
,
Moirod
,
N.
, and
Iglesias
,
A. S.
,
2011
, “
Comparison of Experimental and Numerical Sloshing Loads in Partially Filled Tanks
,”
Ships Offshore Struct.
,
6
(
1–2
), pp.
15
43
.10.1080/17445302.2010.522372
12.
Liu
,
D.
, and
Lin
,
P.
,
2008
, “
A Numerical Study of Three-Dimensional Liquid Sloshing in Tanks
,”
J. Comput. Phys.
,
227
(
8
), pp.
3921
3939
.10.1016/j.jcp.2007.12.006
13.
Moretti
,
F. L.
,
Silveira
,
M. E.
,
Lamin
,
P. C.
,
Brito
,
J. N.
, and
Pockszevnicki
,
B. C.
,
2014
, “
Numerical and Experimental Evaluation of Sloshing in Automotive Fuel Tanks
,”
SAE
Paper No. 2014-360122.10.4271/2014-360122
14.
Molin
,
B.
, and
Remy
,
F.
,
2013
, “
Experimental and Numerical Study of the Sloshing Motion in a Rectangular Tank With a Perforated Screen
,”
J. Fluids Struct.
,
43
, pp.
463
480
.10.1016/j.jfluidstructs.2013.10.001
15.
Frosina
,
E.
,
Senatore
,
A.
,
Andreozzi
,
A.
,
Fortunato
,
F.
, and
Giliberti
,
P.
,
2018
, “
Experimental and Numerical Analyses of the Sloshing in a Fuel Tank
,”
Energies
,
11
(
3
), p.
682
.10.3390/en11030682
16.
Zhang
,
E.
,
2020
, “
Numerical Research on Sloshing of Free Oil Liquid Surface Based on Different Baffle Shapes in Rectangular Fuel Tank
,”
Proc. Inst. Mech. Eng., Part D J. Autom. Eng.
,
234
(
2–3
), pp.
363
377
.10.1177/0954407019855569
17.
Aus der Wiesche
,
S.
,
2003
, “
Computational Slosh Dynamics: Theory and Industrial Application
,”
Comput. Mech.
,
30
(
5–6
), pp.
374
387
.10.1007/s00466-003-0413-8
18.
Cruchaga
,
M. A.
,
Ferrada
,
C.
,
Márquez
,
N.
,
Osses
,
S.
,
Storti
,
M.
, and
Celentano
,
D.
,
2016
, “
Modeling the Sloshing Problem in a Rectangular Tank With Submerged Incomplete Baffles
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3/4
), pp.
722
744
.10.1108/HFF-08-2015-0315
19.
De Man
,
P.
, and
Van Schaftingen
,
J.-J.
,
2012
, “
Prediction of Vehicle Fuel Tank Slosh Noise From Component-Level Test Data
,”
SAE
Paper No. 2012-01-0215.10.4271/2012-01-0215
20.
Kamei
,
M.
,
Hanai
,
J.
,
Fukasawa
,
W.
, and
Makino
,
T.
,
2007
, “
Establishment of a Method for Predicting and Confirming Fuel Tank Sloshing Noise
,”
SAE
Paper No. 2007-01-1538.10.4271/2007-01-1538
21.
Balthy
,
M.
,
Jain
,
C. P.
,
Makana
,
M.
, and
Katti
,
R.
,
2011
, “
Development of a Quantification Methodology for Slosh Noise Associated With Dynamic Fuel Flow Behavior in Passenger Car Tank
,”
SAE
Paper No. 2011-28-0089.10.4271/2011-28-0089
22.
Park
,
J.-S.
,
Choi
,
S.-C.
, and
Hong
,
S.-G.
,
2011
, “
The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis
,”
SAE Int. J. Passen. Cars-Mech. Syst.
,
4
(
2
), pp.
1304
1310
.10.4271/2011-01-1695
23.
Roh
,
W.-J.
,
Cho
,
S.-H.
, and
Park
,
J. I.
,
2005
, “
Simulation of Sloshing in Fuel Tanks and Parametric Study on Noise Reduction by Decreasing Impact Pressure
,”
SAE Trans.
,
114
, pp.
2431
2436
.
24.
Li
,
F.
,
Sibal
,
S. D.
,
McGann
,
I. F.
, and
Hallez
,
R.
,
2011
, “
Radiated Fuel Tank Slosh Noise Simulation
,”
SAE
Paper No. 2011-01-0495.10.4271/2011-01-0495
25.
Saptoadi
,
H.
,
2017
, “
Suitable Deceleration Rates for Environmental Friendly City Driving
,”
Int. J. Res. Chem., Metall. Civ. Eng.
,
4
(
1
), pp.
2
5
.
26.
Maurya
,
A. K.
, and
Bokare
,
P. S.
,
2012
, “
Study of Deceleration Behaviour of Different Vehicle Types
,”
Int. J. Traffic Transp. Eng.
,
2
(
3
), pp.
253
270
.10.1016/j.trpro.2017.05.486
27.
Golla
,
S. T.
,
Mayur
,
K.
,
Venkatesham
,
B.
, and
Banerjee
,
R.
,
2019
, “
Experimental Study of Sloshing Noise in a Partially Filled Rectangular Tank Under Periodic Excitation
,”
Proc. Inst. Mech. Eng., Part D J. Autom. Eng.
,
233
(
11
), pp.
2891
2902
.10.1177/0954407018809300
28.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of Cfd Simulations–Part 2: Application for Rans Simulation of a Cargo/Container Ship
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
803
810
.10.1115/1.1412236
29.
Fraunhofer
,
S. C. A. I.
,
2018
, "MpCCI 4.6.0 User Manual," Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany.
You do not currently have access to this content.