Abstract

The accurate simulation of the aerodynamic behavior of low Reynolds number (Re) cambered airfoils requires the ability to capture the transitional separated boundary layer (BL) that occurs naturally on the surface of the airfoil. In this study, simulations are performed using a modern cambered airfoil designed for use in low Re applications, which are an advancement from previous studies using flat plate geometries or symmetric NACA airfoils. The cambered SD 7037 airfoil is simulated using wall-resolved large eddy simulation (LES) at a modest Re of 4.1×104 and at 1 deg, 5 deg, and 7 deg angles of attack (AOAs), with results validated against experimental data. Simulated predictions of pressure and skin friction coefficients clearly capture the correct location of the laminar separated bubble (LSB) which forms during the natural BL transition process. Sensitivity to elevated inflow turbulence is found to cause early BL reattachment at higher AOAs without impacting the location of BL separation. An integral BL analysis verifies the accuracy of the simulated velocity profiles against experimental values. The scale of horseshoe structures visualized in the transitional BL is larger in comparison to airfoil chord length than what is seen in previous simulations at Re of the order of 105, which highlights the importance of investigating cambered airfoils at a modest Re.

References

1.
Tani
,
I.
,
1964
, “
Low-Speed Flows Involving Bubble Separations
,”
Prog. Aerosp. Sci.
,
5
, pp.
70
103
.10.1016/0376-0421(64)90004-1
2.
Yuan
,
W.
,
Khalid
,
M.
,
Windte
,
J.
,
Scholz
,
U.
, and
Radespiel
,
R.
,
2005
, “
An Investigation of Low-Reynolds-Number Flows Past Airfoils
,”
AIAA
Paper No. AIAA-2005-4607. 10.2514/6.AIAA-2005-4607
3.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
, 9th ed.,
Springer-Verlag
,
Berlin, Heidelberg
.
4.
Hu
,
H.
, and
Yang
,
Z.
,
2008
, “
An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051101
3.10.1115/1.2907416
5.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.10.1115/1.2218517
6.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2011
, “
Interaction of Viscous and Inviscid Instability Modes in Separation-Bubble Transition
,”
Phys. Fluids
,
23
(
12
), p.
124102
.10.1063/1.3666844
7.
Thomareis
,
N.
, and
Papadakis
,
G.
,
2017
, “
Effect of Trailing Edge Shape on the Separated Flow Characteristics Around an Airfoil at Low Reynolds Number: A Numerical Study
,”
Phys. Fluids
,
29
(
1
), p.
014101
.10.1063/1.4973811
8.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
9.
Jones
,
L. E.
, and
Sandberg
,
R. D.
,
2011
, “
Numerical Analysis of Tonal Airfoil Self-Noise and Acoustic Feedback-Loops
,”
J. Sound Vib.
,
330
(
25
), pp.
6137
6152
.10.1016/j.jsv.2011.07.009
10.
Hoarau
,
Y.
,
Braza
,
M.
,
Ventikos
,
Y.
, and
Faghani
,
D.
,
2006
, “
First Stages of the Transition to Turbulence and Control in the Incompressible Detached Flow Around a NACA0012 Wing
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
878
886
.10.1016/j.ijheatfluidflow.2006.03.026
11.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
19
44
.10.1007/s10494-011-9353-0
12.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2006
, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
232
238
.10.1115/1.2170123
13.
Li
,
H. J.
, and
Yang
,
Z.
,
2019
, “
Separated Boundary Layer Transition Under Pressure Gradient in the Presence of Free-Stream Turbulence
,”
Phys. Fluids
,
31
(
10
), p.
104106
.10.1063/1.5122889
14.
Smith
,
T. A.
, and
Ventikos
,
Y.
,
2019
, “
Boundary Layer Transition Over a Foil Using Direct Numerical Simulation and Large Eddy Simulation
,”
Phys. Fluids
,
31
(
12
), p.
124102
.10.1063/1.5126663
15.
Kim
,
H.-J.
,
Lee
,
S.
, and
Fujisawa
,
N.
,
2006
, “
Computation of Unsteady Flow and Aerodynamic Noise of NACA0018 Airfoil Using Large-Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
229
242
.10.1016/j.ijheatfluidflow.2005.08.007
16.
Ziadé
,
P.
,
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2018
, “
Shear Layer Development, Separation, and Stability Over a Low-Reynolds Number Airfoil
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071201
.10.1115/1.4039233
17.
Galbraith
,
M. C.
, and
Visbal
,
M. R.
,
2008
, “
Implicit Large Eddy Simulation of low-Reynolds-Number Transitional Flow Past the SD7003 Airfoil
,”
AIAA
Paper No. 2010-4737. 10.2514/6.2010-4737
18.
Breuer
,
M.
,
2018
, “
Effect of Inflow Turbulence on an Airfoil Flow With Laminar Separation Bubble: An LES Study
,”
Flow, Turbul. Combust.
,
101
(
2
), pp.
433
456
.10.1007/s10494-017-9890-2
19.
Lobo
,
B. A.
,
Schaffarczyk
,
A. P.
, and
Breuer
,
M.
,
2022
, “
Investigation Into Boundary Layer Transition Using Wall-Resolved Large-Eddy Simulations and Modeled Inflow Turbulence
,”
Wind Energy Sci.
,
7
(
3
), pp.
967
990
.10.5194/wes-7-967-2022
20.
Islam
,
M.
,
Langfeldt
,
F.
,
Furst
,
J.
, and
Wood
,
D. H.
,
2017
, “
CFD Analysis of a SD 7003 Airfoil With a Local Correlation Based Transition and Turbulence Model
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
184
, pp.
012067
6
.10.1088/1757-899X/184/1/012067
21.
Bartl
,
J.
,
Sagmo
,
K. F.
,
Bracchi
,
T.
, and
Sætran
,
L.
,
2019
, “
Performance of the NREL S826 Airfoil at Low to Moderate Reynolds Numbers—a Reference Experiment for CFD Models
,”
Eur. J. Mech., B/Fluids
,
75
, pp.
180
192
.10.1016/j.euromechflu.2018.10.002
22.
Ghorbanishohrat
,
F.
,
2019
, “
Study of a Low Re Airfoil Considering Laminar Separation Bubbles in Static and Pitching Motion
,” Ph.D. thesis,
University of Waterloo
, Canada.
23.
Burgmann
,
S.
,
Dannemann
,
J.
, and
Schröder
,
W.
,
2008
, “
Time-Resolved and Volumetric PIV Measurements of a Transitional Separation Bubble on an SD7003 Airfoil
,”
Exp. Fluids
,
44
(
4
), pp.
609
622
.10.1007/s00348-007-0421-0
24.
SHARCNET,
2022
, “SHARCNET,”
Digital Research Alliance of Canada
, Canada.https://alliancecan.ca/en
25.
Gharali
,
K.
,
2013
, “
Pitching Airfoil Study and Freestream Effects for Wind Turbine Applications
,” Ph.D. thesis,
University of Waterloo, Canada
.
26.
Selig
,
M. S.
,
Lyon
,
C. A.
,
Giguere
,
P.
,
Ninham
,
C. P.
, and
Guglielmo
,
J.
,
1996
,
Summary of Low-Speed Airfoil Data
, Vol.
2
,
SoarTech Publications
,
Virginia Beach, VA
.
27.
Versteeg
,
H.
,
Malalasekera
,
W.
,
Orsi
,
G.
,
Ferziger
,
J. H.
,
Date
,
A. W.
, and
Anderson
,
J. D.
,
1995
,
An Introduction to Computational Fluid Dynamics - The Finite Volume Method
, 2nd ed.,
Pearson Education Limited
,
Harlow
.
28.
Dhamankar
,
N. S.
,
Blaisdell
,
G. A.
, and
Lyrintzis
,
A. S.
,
2018
, “
Overview of Turbulent Inflow Boundary Conditions for Large-Eddy Simulations
,”
AIAA J.
,
56
(
4
), pp.
1317
1334
.10.2514/1.J055528
29.
Orlando
,
S. M.
,
2011
, “
Laser Doppler Anemometry and Acoustic Measurements of an S822 Airfoil at Low Reynolds Numbers
,” Master's thesis,
University of Waterloo
, Canada.
30.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.10.1017/CBO9780511840531
31.
ANSYS Academic Research,
Release 20.2
, “
ANSYS Fluent Theory Guide
,” 20th ed.,
ANSYS Inc
., Canonsburg, PA.www.ansys.com
32.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program, No. CTR-S88, Center for Turbulence Research
, Stanford, CA, Dec. 1, pp.
193
208
.
33.
Russell
,
J. M.
,
1979
, “
Length and Bursting of Separation Bubbles: A Physical Interpretation
,”
NASA Langley Research Center, The Science and Technology of Low Speed and Motorless Flight
, Pt.
1
., pp. 171–202, Report No. 19790015727.
34.
Lang
,
M.
,
Rist
,
U.
, and
Wagner
,
S.
,
2004
, “
Investigations on Controlled Transition development in a Laminar Separation Bubble by Means of LDA and PIV
,”
Exp. Fluids
,
36
(
1
), pp.
43
52
.10.1007/s00348-003-0625-x
35.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
ASME
Paper No. GT2005-68663. 10.1115/GT2005-68663
You do not currently have access to this content.