Abstract

The interface of viscous-Rivlin-Ericksen fluids is analyzed through the linear theory of stability analysis when mass and heat is transferring across the interface. The Rivlin-Ericksen fluid lies in the upper region while the lower region of the interface contains viscous fluid. The gravitational acceleration destabilizes the top-heavy arrangement and interface instability is governed by Rayleigh–Taylor instability. The two-dimensional interface is considered, and the viscous potential flow theory is employed to establish the relationship between perturbation's growth and wave number. This relationship is analyzed, and the perturbation's growth is plotted for various flow parameters. A marginal stability condition is obtained, and it is given in terms of heat transport coefficient Λ and wave number. The marginal stability criterion is analyzed using the well-known Newton–Raphson method. The heat and mass transfer phenomenon drives the unstable interface toward stability. It is pointed out that the viscoelastic coefficient λo influences the interface to be stable while the thickness of the viscoelastic fluid makes the interface unstable. Atwood numbers and Weber numbers show destabilizing behavior.

References

1.
Fryxell
,
B.
,
Mueller
,
E.
, and
Arnett
,
D.
,
1991
, “
Instabilities and Clumping in SN 1987A. I-Early Evolution in Two Dimensions
,”
Astrophys. J.
,
367
, pp.
619
634
.10.1086/169657
2.
Lindl
,
J. D.
,
Amendt
,
P.
,
Berger
,
R. L.
,
Glendinning
,
S. G.
,
Glenzer
,
S. H.
,
Haan
,
S. W.
,
Kauffman
,
R. L.
,
Landen
,
O. L.
, and
Suter
,
L. J.
,
2004
, “
The Physics Basis for Ignition Using Indirect-Drive Targets on the National Ignition Facility
,”
Phys. Plasmas
,
11
(
2
), pp.
339
491
.10.1063/1.1578638
3.
Lindl
,
J.
,
Landen
,
O.
,
Edwards
,
J.
, and
Moses
,
E.
,
NIC team
,
2014
, “
Review of the National Ignition Campaign 2009-2012
,”
Phys. Plasmas
,
21
(
2
), p.
020501
.10.1063/1.4865400
4.
Atzeni
,
S.
, and
Meyer-ter-Vehn
,
J.
,
2004
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
, Vol.
125
,
Oxford University Press
,
Oxford, UK
.
5.
He
,
X. T.
, and
Zhang
,
W. Y.
,
2007
, “
Inertial Fusion Research in China
,”
Eur. Phys. J. D
,
44
(
2
), pp.
227
231
.10.1140/epjd/e2007-00005-1
6.
Betti
,
R.
, and
Hurricane
,
O. A.
,
2016
, “
Inertial-Confinement Fusion With Lasers
,”
Nat. Phys.
,
12
(
5
), pp.
435
448
.10.1038/nphys3736
7.
Rayleigh
,
R.
,
1882
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. London Math. Soc.
,
S1-14
(
1
), pp.
170
177
.10.1112/plms/s1-14.1.170
8.
Taylor
,
G. I.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
I. Proc. R. Soc. London, Ser. A
201
(
1065
), pp.
192
196
.
9.
Emmons
,
H. W.
,
Chang
,
C. T.
, and
Watson
,
B. C.
,
1960
, “
Taylor Instability of Finite Surface Waves
,”
J. Fluid Mech.
,
7
(
2
), pp.
177
193
.10.1017/S0022112060001420
10.
Cole
,
R. L.
, and
Tankin
,
R. S.
,
1973
, “
Experimental Study of Taylor Instability
,”
Phys. Fluids
,
16
(
11
), pp.
1810
1815
.10.1063/1.1694217
11.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Phys. D
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
12.
Jacobs
,
J. W.
, and
Catton
,
I.
,
1988
, “
Three-Dimensional Rayleigh-Taylor Instability Part 1. Weakly Nonlinear Theory
,”
J. Fluid Mech.
,
187
, pp.
329
352
.10.1017/S002211208800045X
13.
Hsieh
,
D. Y.
,
1978
, “
Interfacial Stability With Mass and Heat Transfer
,”
Phys. Fluids
,
21
(
5
), pp.
745
748
.10.1063/1.862292
14.
Turkyilmazoglu
,
M.
, and
Gajjar
,
J. S. B.
,
2000
, “
Direct Spatial Resonance in the Laminar Boundary Layer Due to a Rotating Disk
,”
Sadhana
,
25
(
6
), pp.
601
617
.10.1007/BF02703508
15.
Türkyılmazoglu
,
M.
,
Gajjar
,
J. S. B.
, and
Ruban
,
A. I.
,
1999
, “
The Absolute Instability of Thin Wakes in an Incompressible/Compressible Fluid
,”
Theory Comput. Fluid Dyn.
,
13
(
2
), pp.
91
114
.10.1007/s001620050006
16.
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2012
, “
Viscous Potential Flow Analysis of the Rayleigh-Taylor Instability With Heat and Mass Transfer
,”
Int. J. Appl. Math Mech.
,
7
(
12
), pp.
73
84
.
17.
Awasthi
,
M. K.
,
2013
, “
Nonlinear Analysis of Rayleigh Taylor Instability of Cylindrical Flow With Heat and Mass Transfer
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061205
.10.1115/1.4024001
18.
Awasthi
,
M. K.
,
2014
, “
Study on Capillary Instability With Heat and Mass Transfer Through Porous Media: Effect of Irrotational Viscous Pressure
,”
ASME J. Fluids. Eng.
,
136
(
10
), p.
101204
.10.1115/1.4027546
19.
Awasthi
,
M. K.
,
2014
, “
Study of Kelvin-Helmholtz Instability With Heat and Mass Transfer
,”
ASME J. Fluids. Eng.
,
136
(
12
), p.
121202
.10.1115/1.4027599
20.
Awasthi
,
M. K.
,
2019
, “
Rayleigh-Taylor Instability of Swirling Annular Layer With Mass Transfer
,”
ASME J. Fluids. Eng.
,
141
(
7
), p.
071202
.10.1115/1.4042174
21.
Awasthi, M. K., 2020, “Capillary Instability of Viscoelastic Liquid Film With Heat and Mass Transfer,”
ASME J. Heat Transfer
, 142(2), p. 022108.10.1115/1.4045644
22.
Allah
,
M. O.
,
2011
, “
Viscous Potential Flow Analysis of Interfacial Instability With Mass Transfer Through Porous Media
,”
Appl. Math. Computation
,
217
, pp.
7920
7931
.10.1016/j.amc.2011.02.066
23.
Allah
,
M. O.
,
2013
, “
Viscous Potential Flow Analysis of Magneto-Hydrodynamic Interfacial Stability Through Porous Media
,”
Ind. J. Pure Appl. Math.
,
44
, pp.
419
441
.
24.
Sharma
,
R. C.
,
1976
, “
Effect of Rotation on the Thermal Instability of a Viscoelastic Fluid
,”
Acta Phys. Hung.
,
40
(
1
), pp.
11
17
.10.1007/BF03157148
25.
Sharma
,
R. C.
, and
Sharma
,
K. C.
,
1978
, “
Rayleigh-Taylor Instability of Two Viscoelastic Superposed Fluids
,”
Acta Phys.
,
45
(
3
), pp.
213
220
.10.1007/BF03157252
26.
Fu
,
Q. F.
,
Deng
,
X. D.
, and
Yang
,
L. J.
,
2019
, “
Kelvin-Helmholtz Instability Analysis of Confined Oldroyd-B Liquid Film With Heat and Mass Transfer
,”
J. Non-Newtonian Fluid Mech.
,
267
, pp.
28
34
.10.1016/j.jnnfm.2019.03.009
27.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
,
1955
, “
Stress-Deformation Relaxations for Isotropic Materials
,”
J. Ration. Mech. Anal.
,
4
, pp.
323
329
.
28.
Srivastava
,
R. K.
, and
Singh
,
K. K.
,
1988
, “
Drag on a Sphere Oscillating in a Conducting Dusty Viscous Fluid in Presence of the Uniform Magnetic Field
,”
Bull. Calcutta Math. Soc.
80
, pp.
286
291
.
29.
Sharma
,
R. C.
, and
Kumar
,
P.
,
1997
, “
Thermal Instability in Rivlin–Ericksen Elastico-Viscous Fluid in Hydromagnetics
,”
Z. Naturforsch.
,
52
(
6–7
), pp.
528
532
.10.1515/zna-1997-6-711
30.
Sharma
,
R. C.
, and
Kumar
,
P.
,
1996
, “
Effect of Rotation on Thermal Instability in Rivlin–Ericksenelastico-Viscous Fluid
,”
Z. Naturforsch.
,
51
(
7
), pp.
821
824
.10.1515/zna-1996-0704
31.
Sharma
,
R. C.
,
Kumar
,
P.
, and
Sharma
,
S.
,
2001
, “
Rayleigh–Taylor Instability of Rivlin–Ericksen Elastico-Viscous Fluid Through Porous Medium
,”
Indian J. Phys.
,
75B
, pp.
337
340
.
32.
El-Sayed
,
M. F.
,
2001
, “
Electrohydrodynamic Instability of Two Superposed Walters B' Viscoelastic Fluids in Relative Motion Through Porous Medium
,”
Arch. Appl. Mech.
,
71
(
11
), pp.
717
732
.10.1007/s004190100178
33.
Postelnicu
,
A.
,
2007
, “
Thermal Hydrodynamic Instability of a Walters B Viscoelastic Fluid in a Fluid-Saturated an Isotropic Porous Medium With Fast Chemical Reaction
,”
Proceedings of the 81st EUROTHERM Seminar on Reactive Heat Transfer in Porous Media, Ecole Des Mines D'Albi
,
France
, June 4–6, Paper No. ET81-XXXX, 1–8.
34.
Gupta
,
U.
, and
Sharma
,
G.
,
2007
, “
Rivlin-Erickson Elastico-Viscous Fluid Heated and Soluted From Below in the Presence of Compressibility, Rotation and Hall Currents
,”
J. Appl. Math. Comput.
,
25
(
1–2
), pp.
51
66
.10.1007/BF02832338
35.
Kango
,
S. K.
, and
Singh
,
V.
,
2012
, “
Thermal Instability of Rivlin-Ericksen Elastico-Viscous Rotating Fluid in Porous Medium in Hydromagnetics
,”
Appl. Appl. Mech.: Int. J.
,
7
(
1
), pp.
248
260
.
36.
Shukla
,
A. K.
,
Awasthi
,
M. K.
, and
Asthana
,
R.
,
2021
, “
Rayleigh-Taylor Instability at Viscous Gas-Viscoelastic Fluid Interface With Heat and Mass Transfer
,”
Mater. Today: Proc.
,
46
, pp.
10217
10220
.10.1016/j.matpr.2020.11.379
37.
Awasthi
,
M. K.
,
Shukla
,
A. K.
, and
Yadav
,
D.
,
2021
, “
Rayleigh Instability of Power-Law Viscoelastic Liquid With Heat and Mass Transfer
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105657
.10.1016/j.icheatmasstransfer.2021.105657
38.
Shukla
,
A. K.
, and
Awasthi
,
M. K.
,
2022
, “
Interfacial Characteristics of Power-Law Viscoelastic Fluid With Heat and Mass Transfer in Planar Configuration
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101303
.10.1115/1.4054468
39.
Awasthi
,
M. K.
,
Dharamendra
, and
Dhananjay
,
Y.
,
2022
, “
Instability of Rivlin-Ericksen Fluid Film With Heat Transport
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106085
.10.1016/j.icheatmasstransfer.2022.106085
40.
Awasthi
,
M. K.
,
Dharamendra
, and
Dhananjay
,
Y.
,
2022
, “
Stability Characteristics of Walter's B Viscoelastic Fluid in a Cylindrical Configuration With Heat Transfer
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
19
), pp.
10370
10377
.10.1177/09544062221101831
You do not currently have access to this content.