Abstract

The effects of short automatic moving deflectors (AMD) on the aerodynamic characteristics of Ahmed body are considered in this study. AMDs, known as biomimetic control devices, were added to the leading edge of the slanted surface. Its position was automatically adjusted in a separation flow. The aerodynamic drag, the pressure, and the skin-friction distribution on the slanted surface were measured for the model with three deflectors with lengths of 9%, 18%, and 30% of the slant. Particle image velocimetry was also utilized to assess the flow on the vertical symmetric plane. The Reynolds number based on the height of the model is between 1.44 × 105 and 2.80 × 105. The results showed that at a low Reynolds number, a short deflector increases the drag of the model. The effectiveness of the deflector in reducing the drag arises at a high velocity, where a maximum drag reduction of 11% was observed. The deflectors also reduced the lift coefficient by as much as 89%. Global luminescent oil-film skin-friction measurements showed that in the low drag state, the structure of the longitudinal vortexes and the separation bubble disappear on the surface. A complex flow structure is classified for the baseline model and the model with deflectors. The relationship between the surface flow, pressure distribution, and flow on the symmetric vertical plane is discussed in detail.

References

1.
Hucho
,
W.
, and
Sovran
,
G.
,
1993
, “
Aerodynamics of Road Vehicles
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
485
537
.10.1146/annurev.fl.25.010193.002413
2.
Ahmed
,
S. R.
,
Ramm
,
G.
, and
Faltin
,
G.
,
1984
, “
Some Salient Features of the Time -Averaged Ground
,”
SAE Trans.
,
93
(
1984
), pp.
473
503
.http://courses.me.metu.edu.tr/courses/me485/files/Ahmed1984.pdf
3.
Choi
,
H.
,
Lee
,
J.
, and
Park
,
H.
,
2014
, “
Aerodynamics of Heavy Vehicles
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
441
468
.10.1146/annurev-fluid-011212-140616
4.
Fourrié
,
G.
,
Keirsbulck
,
L.
, and
Labraga
,
L.
,
2013
, “
Wall Shear Stress Characterization of a 3D Bluff-Body Separated Flow
,”
J. Fluids Struct.
,
42
, pp.
55
69
.10.1016/j.jfluidstructs.2013.05.014
5.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2013
, “
Experimental Characterization of Flow Unsteadiness in the Centerline Plane of an Ahmed Body Rear Slant
,”
Exp. Fluids
,
54
(
3
), p.
1479
.10.1007/s00348-013-1479-5
6.
Kim
,
D.
,
Lee
,
H.
,
Yi
,
W.
, and
Choi
,
H.
,
2016
, “
A Bio-Inspired Device for Drag Reduction on a Three-Dimensional Model Vehicle
,”
Bioinspiration Biomimetics
,
11
(
2
), p.
026004
.10.1088/1748-3190/11/2/026004
7.
Tunay
,
T.
,
Sahin
,
B.
, and
Akilli
,
H.
,
2013
, “
Experimental and Numerical Studies of the Flow Around the Ahmed Body
,”
Wind Struct.
,
17
(
5
), pp.
515
535
.10.12989/was.2013.17.5.515
8.
Tunay
,
T.
,
Yaniktepe
,
B.
, and
Sahin
,
B.
,
2016
, “
Computational and Experimental Investigations of the Vortical Flow Structures in the Near Wake Region Downstream of the Ahmed Vehicle Model
,”
J. Wind Eng. Ind. Aerodyn.
,
159
, pp.
48
64
.10.1016/j.jweia.2016.10.006
9.
Tunay
,
T.
,
Firat
,
E.
, and
Sahin
,
B.
,
2018
, “
Experimental Investigation of the Flow Around a Simplified Ground Vehicle Under Effects of the Steady Crosswind
,”
Int. J. Heat Fluid Flow
,
71
, pp.
137
152
.10.1016/j.ijheatfluidflow.2018.03.020
10.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2012
, “
Effects of Suppressing the 3D Separation on the Rear Slant on the Flow Structures Around an Ahmed Body
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
237
243
.10.1016/j.jweia.2012.04.022
11.
Metka
,
M.
, and
Gregory
,
J. W.
,
2015
, “
Drag Reduction on the 25-Deg Ahmed Model Using Fluidic Oscillators
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051108
.10.1115/1.4029535
12.
Fourrié
,
G.
,
Keirsbulck
,
L.
,
Labraga
,
L.
, and
Gilliéron
,
P.
,
2011
, “
Bluff-Body Drag Reduction Using a Deflector
,”
Exp. Fluids
,
50
(
2
), pp.
385
395
.10.1007/s00348-010-0937-6
13.
Hanfeng
,
W.
,
Yu
,
Z.
,
Chao
,
Z.
, and
Xuhui
,
H.
,
2016
, “
Aerodynamic Drag Reduction of an Ahmed Body Based on Deflectors
,”
J. Wind Eng. Ind. Aerodyn.
,
148
, pp.
34
44
.10.1016/j.jweia.2015.11.004
14.
Brunn
,
A.
, and
Nitsche
,
W.
,
2006
, “
Active Control of Turbulent Separated Flows Over Slanted Surfaces
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
748
755
.10.1016/j.ijheatfluidflow.2006.03.006
15.
Joseph
,
P.
,
Amandolese
,
X.
,
Edouard
,
C.
, and
Aider
,
J. L.
,
2013
, “
Flow Control Using MEMS Pulsed Micro-Jets on the Ahmed Body
,”
Exp. Fluids
,
54
(
1
), p.
1442
.10.1007/s00348-012-1442-x
16.
Kim
,
D.
,
Do
,
H.
, and
Choi
,
H.
,
2020
, “
Drag Reduction on a Three-Dimensional Model Vehicle Using a Wire-to-Plate DBD Plasma Actuator
,”
Exp. Fluids
,
61
(
6
), pp.
1
14
.10.1007/s00348-020-02961-3
17.
Pujals
,
G.
,
Depardon
,
S.
, and
Cossu
,
C.
,
2010
, “
Drag Reduction of a 3D Bluff Body Using Coherent Streamwise Streaks
,”
Exp. Fluids
,
49
(
5
), pp.
1085
1094
.10.1007/s00348-010-0857-5
18.
Mohammadikalakoo
,
B.
,
Schito
,
P.
, and
Mani
,
M.
,
2020
, “
Passive Flow Control on Ahmed Body by Rear Linking Tunnels
,”
J. Wind Eng. Ind. Aerodyn.
,
205
, p.
104330
.10.1016/j.jweia.2020.104330
19.
Beaudoin
,
J. F.
, and
Aider
,
J. L.
,
2008
, “
Drag and Lift Reduction of a 3D Bluff Body Using Flaps
,”
Exp. Fluids
,
44
(
4
), pp.
491
501
.10.1007/s00348-007-0392-1
20.
Tian
,
J.
,
Zhang
,
Y.
,
Zhu
,
H.
, and
Xiao
,
H.
,
2017
, “
Aerodynamic Drag Reduction and Flow Control of Ahmed Body With Flaps
,”
Adv. Mech. Eng.
,
9
(
7
), epub.10.1177/1687814017711390
21.
Maine
,
M.
,
Oumami
,
M.
,
El Bouksour
,
O.
, and
Nassiri
,
B.
,
2021
, “
Study of the Effect of Some Deflector's Geometry Factors on the Reduction of the Aerodynamic Drag of the Car Model
,”
Jordan J. Mech. Ind. Eng.
,
15
(
3
), pp.
265
272
.http://www.jjmie.hu.edu.jo/V15-3/03-jjmie_28_21.pdf
22.
Raina
,
A.
,
Harmain
,
G. A.
, and
Haq
,
M. I. U.
,
2017
, “
Numerical Investigation of Flow Around a 3D Bluff Body Using Deflector Plate
,”
Int. J. Mech. Sci.
,
131–132
, pp.
701
711
.10.1016/j.ijmecsci.2017.08.018
23.
Evrard
,
A.
,
Cadot
,
O.
,
Herbert
,
V.
,
Ricot
,
D.
,
Vigneron
,
R.
, and
Délery
,
J.
,
2016
, “
Fluid Force and Symmetry Breaking Modes of a 3D Bluff Body With a Base Cavity
,”
J. Fluids Struct.
,
61
, pp.
99
114
.10.1016/j.jfluidstructs.2015.12.001
24.
Fluck
,
M.
, and
Crawford
,
C.
,
2014
, “
A Lifting Line Model to Investigate the Influence of Tip Feathers on Wing Performance
,”
Bioinspiration Biomimetics
,
9
(
4
), p.
046017
.10.1088/1748-3182/9/4/046017
25.
Mazellier
,
N.
,
Feuvrier
,
A.
, and
Kourta
,
A.
,
2012
, “
Biomimetic Bluff Body Drag Reduction by Self-Adaptive Porous Flaps
,”
C. R. Mec.
,
340
(
1–2
), pp.
81
94
.10.1016/j.crme.2011.11.006
26.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,”
Naturwissenschaften
,
87
(
4
), pp.
157
171
.10.1007/s001140050696
27.
Johnston
,
J.
, and
Gopalarathnam
,
A.
,
2012
, “
Investigation of a Bio-Inspired Lift-Enhancing Effector on a 2D Airfoil
,”
Bioinspiration Biomimetics
,
7
(
3
), p.
036003
.10.1088/1748-3182/7/3/036003
28.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
(
1
), p. e30.10.5334/jors.bl
29.
Tran
,
T. H.
, and
Chen
,
L.
,
2021
, “
Wall Shear-Stress Extraction by an Optical Flow Algorithm With a Sub-Grid Formulation
,”
Acta Mech. Sin./Lixue Xuebao
,
37
(
1
), pp.
65
79
.10.1007/s10409-020-00994-9
30.
Tran
,
T. H.
,
Anyoji
,
M.
,
Nakashima
,
T.
,
Shimizu
,
K.
, and
Le
,
A. D.
,
2022
, “
Experimental Study of the Skin-Friction Topology Around the Ahmed Body in Cross-Wind Conditions
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031209
.10.1115/1.4052418
31.
Tran
,
T. H.
,
Hijikuro
,
M.
,
Anyoji
,
M.
,
Uchida
,
T.
,
Nakashima
,
T.
, and
Shimizu
,
K.
,
2022
, “
Deflector Effect on Flow Behavior and Drag of an Ahmed Body Under Crosswind Conditions
,”
J. Wind Eng. Ind. Aerodyn.
, 231, p.
105238
.10.1016/j.jweia.2022.105238
32.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1998
, “
Luminescent Oil-Film Skin-Friction Meter Introduction
,”
AIAA J.
,
36
(
8
), pp.
1460
1465
.10.2514/2.538
33.
Thibault
,
R.
, and
Poitras
,
G. J.
,
2017
, “
Uncertainty Evaluation of Friction Velocity Measurements by Oil-Film Interferometry
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051401
.10.1115/1.4035461
34.
Tran
,
T. H.
,
Ambo
,
T.
,
Lee
,
T.
,
Chen
,
L.
,
Nonomura
,
T.
, and
Asai
,
K.
,
2018
, “
Effect of Boattail Angles on the Flow Pattern on an Axisymmetric Afterbody Surface at Low Speed
,”
Exp. Therm. Fluid Sci.
,
99
(
5
), pp.
324
335
.10.1016/j.expthermflusci.2018.07.034
35.
Tran
,
T. H.
,
Ambo
,
T.
,
Lee
,
T.
,
Ozawa
,
Y.
,
Chen
,
L.
,
Nonomura
,
T.
, and
Asai
,
K.
,
2019
, “
Effect of Reynolds Number on Flow Behavior and Pressure Drag of Axisymmetric Conical Boattails at Low Speeds
,”
Exp. Fluids
,
60
(
3
), pp.
1
19
.10.1007/s00348-019-2680-y
36.
Zhong
,
H.
,
Woodiga
,
S.
,
Wang
,
P.
,
Shang
,
J.
,
Cui
,
X.
,
Wang
,
J.
, and
Liu
,
T.
,
2015
, “
Skin-Friction Topology of Wing-Body Junction Flows
,”
Eur. J. Mech., B/Fluids
,
53
, pp.
55
67
.10.1016/j.euromechflu.2015.04.002
37.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car, Part 1: Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
907
918
.10.1115/1.1989371
38.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car, Part 2: Understanding the Flow
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
919
928
.10.1115/1.1989372
39.
Depardon
,
S.
,
Lasserre
,
J. J.
,
Boueilh
,
J. C.
,
Brizzi
,
L. E.
, and
Borée
,
J.
,
2005
, “
Skin Friction Pattern Analysis Using Near-Wall PIV
,”
Exp. Fluids
,
39
(
5
), pp.
805
818
.10.1007/s00348-005-0014-8
40.
Tunay
,
T.
,
Sahin
,
B.
, and
Ozbolat
,
V.
,
2014
, “
Effects of Rear Slant Angles on the Flow Characteristics of Ahmed Body
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
165
176
.10.1016/j.expthermflusci.2014.04.016
41.
Nakamura
,
Y.
,
Nakashima
,
T.
,
Yan
,
C.
,
Shimizu
,
K.
,
Hiraoka
,
T.
,
Mutsuda
,
H.
,
Kanehira
,
T.
, and
Nouzawa
,
T.
,
2022
, “
Identification of Wake Vortices in a Simplified Car Model During Significant Aerodynamic Drag Increase Under Crosswind Conditions
,”
J. Visual.
,
25
(
5
), pp.
983
997
.10.1007/s12650-022-00837-8
42.
Joseph
,
P.
,
Amandolèse
,
X.
, and
Aider
,
J. L.
,
2012
, “
Drag Reduction on the 25 deg Slant Angle Ahmed Reference Body Using Pulsed Jets
,”
Exp. Fluids
,
52
(
5
), pp.
1169
1185
.10.1007/s00348-011-1245-5
You do not currently have access to this content.