Abstract

Tip leakage flow (TLF) is a typical flow phenomenon in the internal flow of axial-flow pumps that has a serious impact on their safety and stability. In this study, numerical simulations are performed to investigate the influence of various tip clearances and operating conditions on the characteristics of the tip leakage vortex (TLV) and energy loss of a prototype of a vertical axial-flow pump. First, based on entropy production theory, the TLV-induced energy loss is quantitatively studied. The entropy production rate caused by turbulence dissipation (EPTD), which is caused by pulsating velocity, contributes the most to the total energy loss. The EPTD at the impeller is principally distributed on the leading edge of the blade due to the influence of the tip clearance. Then, the spatial shape and trajectory of the core of the TLV are discussed, and their correlations with pressure and vorticity are investigated to reveal the spatial distribution characteristics and formation mechanism of TLVs. With increasing tip clearance, the trajectory of the vortex core extends radially outward, and the low-pressure area near the blade tip is consistent with the trajectory of the core of the TLV, which accompanies high vorticity. Fundamentally, pressure gradients and flow separation at the leading edge are the root causes of the TLVs. Lastly, the spatial evolution of TLVs under different calculation schemes is discussed by utilizing the vorticity transport equation, demonstrating that the Coriolis force (CORF) is the main factor that affects the location of a TLV, whereas the vorticity stretching term (VST) has a greater influence on the vorticity variation rate of the TLV than the CORF and plays a predominant role in the spatial development of the TLF.

References

1.
Kaya
,
D.
,
2003
, “
Experimental Study on Regaining the Tangential Velocity Energy of Axial Flow Pump
,”
Energy Convers. Manag.
,
44
(
11
), pp.
1817
1829
.10.1016/S0196-8904(02)00187-5
2.
Shi
,
L. J.
,
Zhang
,
W. P.
,
Jiao
,
H. F.
,
Tang
,
F. P.
,
Wang
,
L.
,
Sun
,
D. D.
, and
Shi
,
W. D.
,
2020
, “
Numerical Simulation and Experimental Study on the Comparison of the Hydraulic Characteristics of an Axial-Flow Pump and a Full Tubular Pump
,”
Renewable Energy
,
153
, pp.
1455
1464
.10.1016/j.renene.2020.02.082
3.
Shi
,
L. J.
,
Zhu
,
J.
,
Tang
,
F. P.
, and
Wang
,
C.
,
2020
, “
Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model
,”
Energies
,
13
(
4
), p.
779
.10.3390/en13040779
4.
Wang
,
C. Y.
,
Wang
,
F. J.
,
Tang
,
Y.
,
Zi
,
D.
,
Xie
,
L. H.
,
He
,
C. L.
,
Zhu
,
Q. R.
, and
Huang
,
C. B.
,
2020
, “
Investigation Into the Phenomenon of Flow Deviation in the S-Shaped Discharge Passage of a Slanted Axial-Flow Pumping System
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041205
.10.1115/1.4045438
5.
Liu
,
Y. B.
,
Tan
,
L.
, and
Wang
,
B. B.
,
2018
, “
A Review of Tip Clearance in Propeller, Pump and Turbine
,”
Energies
,
11
(
9
), p.
2202
.10.3390/en11092202
6.
Inoue
,
M.
, and
Furukawa
,
M.
,
2002
, “
Physics of Tip Clearance Flow in Turbomachinery
,”
ASME J. Fluids Eng.
,
257
(2B), pp.
777
789
.https://kyushuu.pure.elsevier.com/en/publications/physics-of-tip-clearance-flow-in-turbomachinery
7.
You
,
D. H.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
,
18
(
10
), p.
105102
.10.1063/1.2354544
8.
Shu
,
Z. K.
,
Shi
,
G. T.
,
Tao
,
S. J.
,
Tang
,
W. Q.
, and
Li
,
C. X.
,
2021
, “
Three-Dimensional Spatial-Temporal Evolution and Dynamics of the Tip Leakage Vortex in an Oil-Gas Multiphase Pump
,”
Phys. Fluids
,
33
(
11
), p.
113320
.10.1063/5.0073634
9.
Camussi
,
R.
,
Grilliat
,
J.
,
Caputi-Gennaro
,
G.
, and
Jacob
,
M. C.
,
2010
, “
Experimental Study of a Tip Leakage Flow: Wavelet Analysis of Pressure Fluctuations
,”
J. Fluid Mech.
,
660
, pp.
87
113
.10.1017/S0022112010002570
10.
You
,
D. H.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.10.1017/S0022112007006842
11.
Zhang
,
D. S.
,
Shi
,
L.
,
Shi
,
W. D.
,
Zhao
,
R. J.
,
Wang
,
H. Y.
, and
van Esch
,
B. P. M.
,
2015
, “
Numerical Analysis of Unsteady Tip Leakage Vortex Cavitation Cloud and Unstable Suction-Side-Perpendicular Cavitating Vortices in an Axial Flow Pump
,”
Int. J. Multiphase Flow
,
77
, pp.
244
259
.10.1016/j.ijmultiphaseflow.2015.09.006
12.
Cheng
,
H. Y.
,
Ji
,
B.
,
Long
,
X. P.
,
Huai
,
W. X.
, and
Farhat
,
M.
,
2021
, “
A Review of Cavitation in Tip-Leakage Flow and Its Control
,”
J. Hydrodyn.
,
33
(
2
), pp.
226
242
.10.1007/s42241-021-0022-z
13.
Liu
,
Y. B.
,
Tan
,
L.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Energy Performance and Flow Patterns of a Mixed-Flow Pump With Different Tip Clearance Sizes
,”
Energies
,
10
(
2
), p.
191
.10.3390/en10020191
14.
Feng
,
J. J.
,
Luo
,
X. Q.
,
Guo
,
P. C.
, and
Wu
,
G. K.
,
2016
, “
Influence of Tip Clearance on Pressure Fluctuations in an Axial Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1603
1610
.10.1007/s12206-016-0315-2
15.
Wu
,
H. X.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
16.
Miorini
,
R. L.
,
Wu
,
H. X.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.-Trans. ASME
,
134
(
3
), p.
031018
.10.1115/1.4003065
17.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), pp.
1
13
.10.1007/s00348-014-1849-7
18.
Decaix
,
J.
,
Balarac
,
G.
,
Dreyer
,
M.
,
Farhat
,
M.
, and
Munch
,
C.
,
2015
, “
RANS and LES Computations of the Tip-Leakage Vortex for Different Gap Widths
,”
J. Turbul.
,
16
(
4
), pp.
309
341
.10.1080/14685248.2014.984068
19.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Chen
,
B.
, and
Guan
,
X. F.
,
2010
, “
Unsteady Flow Analysis and Experimental Investigation of Axial-Flow Pump
,”
J. Hydrodyn.
,
22
(
1
), pp.
35
43
.10.1016/S1001-6058(09)60025-1
20.
Zhang
,
D. S.
,
Shi
,
W. D.
,
van Esch
,
B. P. M.
,
Shi
,
L.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
, pp.
61
71
.10.1016/j.compfluid.2015.01.010
21.
Shen
,
X.
,
Zhang
,
D. S.
,
Xu
,
B.
,
Shi
,
W. D.
, and
van Esch
,
B. P. M.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Tip Leakage Vortex Induced Cavitating Flow on Pressure Fluctuation in an Axial Flow Pump
,”
Renewable Energy
,
163
, pp.
1195
1209
.10.1016/j.renene.2020.09.004
22.
Shen
,
S. M.
,
Qian
,
Z. D.
,
Ji
,
B.
, and
Agarwal
,
R. K.
,
2019
, “
Numerical Investigation of Tip Flow Dynamics and Main Flow Characteristics With Varying Tip Clearance Widths for an Axial-Flow Pump
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
4
), pp.
1
13
.10.1177/0957650918812541
23.
Kan
,
K.
,
Yang
,
Z. X.
,
Lyu
,
P.
,
Zheng
,
Y.
, and
Shen
,
L.
,
2021
, “
Numerical Study of Turbulent Flow Past a Rotating Axial-Flow Pump Based on a Level-Set Immersed Boundary Method
,”
Renewable Energy
,
168
, pp.
960
971
.10.1016/j.renene.2020.12.103
24.
Xu
,
B.
,
Shen
,
X.
,
Zhang
,
D. S.
, and
Zhang
,
W. B.
,
2019
, “
Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump With Different Tip Clearances
,”
Processes
,
7
(
12
), p.
935
.10.3390/pr7120935
25.
Gong
,
R. Z.
,
Wang
,
H. J.
,
Chen
,
L. X.
,
Li
,
D. Y.
,
Zhang
,
H. C.
, and
Wei
,
X. Z.
,
2013
, “
Application of Entropy Production Theory to Hydro-Turbine Hydraulic Analysis
,”
Sci. Chin. Technol. Sci.
,
56
(
7
), pp.
1636
1643
.10.1007/s11431-013-5229-y
26.
Yu
,
Z. F.
,
Wang
,
W. Q.
,
Yan
,
Y.
, and
Liu
,
X. S.
,
2021
, “
Energy Loss Evaluation in a Francis Turbine Under Overall Operating Conditions Using Entropy Production Method
,”
Renewable Energy
,
169
, pp.
982
999
.10.1016/j.renene.2021.01.054
27.
Schmandt
,
B.
, and
Herwig
,
H.
,
2011
, “
Internal Flow Losses: A Fresh Look at Old Concepts
,”
ASME J. Fluids Eng.-Trans. ASME
,
133
(
5
), p.
051201
.10.1115/1.4003857
28.
Yang
,
F.
,
Li
,
Z. B.
,
Hu
,
W. Z.
,
Liu
,
C.
,
Jiang
,
D. J.
,
Liu
,
D. S.
, and
Nasr
,
A.
,
2022
, “
Analysis of Flow Loss Characteristics of Slanted Axial-Flow Pump Device Based on Entropy Production Theory
,”
R. Soc. Open Sci.
,
9
(
1
), p.
211208
.10.1098/rsos.211208
29.
Hou
,
H. C.
,
Zhang
,
Y. X.
, and
Li
,
Z. L.
,
2017
, “
A Numerical Research on Energy Loss Evaluation in a Centrifugal Pump System Based on Local Entropy Production Method
,”
Therm. Sci.
,
21
(
3
), pp.
1287
1299
.10.2298/TSCI150702143H
30.
Zhang
,
F.
,
Appiah
,
D.
,
Hong
,
F.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Adu-Poku
,
J. A.
, and
Wei
,
X. Y.
,
2020
, “
Energy Loss Evaluation in a Side Channel Pump Under Different Wrapping Angles Using Entropy Production Method
,”
Int. Commun. Heat Mass Transfer
,
113
, p.
104526
.10.1016/j.icheatmasstransfer.2020.104526
31.
Han
,
C. Z.
,
Long
,
Y.
,
Xu
,
M. H.
, and
Ji
,
B.
,
2021
, “
Verification and Validation of Large Eddy Simulation for Tip Clearance Vortex Cavitating Flow in a Waterjet Pump
,”
Energies
,
14
(
22
), p.
7635
.10.3390/en14227635
32.
Li
,
D. Y.
,
Zuo
,
Z. G.
,
Wang
,
H. J.
,
Liu
,
S. H.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2019
, “
Review of Positive Slopes on Pump Performance Characteristics of Pump-Turbines
,”
Renewable Sust. Energ. Rev.
,
112
, pp.
901
916
.10.1016/j.rser.2019.06.036
33.
Ji
,
L. L.
,
Li
,
W.
,
Shi
,
W. D.
,
Chang
,
H.
, and
Yang
,
Z. Y.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
34.
Ji
,
L. L.
,
Li
,
W.
,
Shi
,
W. D.
,
Tian
,
F.
, and
Agarwal
,
R.
,
2020
, “
Diagnosis of Internal Energy Characteristics of Mixed-Flow Pump Within Stall Region Based on Entropy Production Analysis Model
,”
Int. Commun. Heat Mass Transfer
,
117
, p.
104784
.10.1016/j.icheatmasstransfer.2020.104784
35.
Li
,
Y. J.
,
Zheng
,
Y. H.
,
Meng
,
F.
, and
Osman
,
M. K.
,
2020
, “
The Effect of Root Clearance on Mechanical Energy Dissipation for Axial Flow Pump Device Based on Entropy Production
,”
Processes
,
8
(
11
), p.
1506
.10.3390/pr8111506
36.
Shu
,
Z. K.
,
Shi
,
G. T.
,
Dan
,
Y.
,
Wang
,
B. X.
, and
Tan
,
X.
,
2022
, “
Enstrophy Dissipation of the Tip Leakage Vortex in a Multiphase Pump
,”
Phys. Fluids
,
34
(
3
), p.
033310
.10.1063/5.0082899
37.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
38.
Qin
,
D. H.
,
Huang
,
Q. G.
,
Pan
,
G.
,
Han
,
P.
,
Luo
,
Y.
, and
Dong
,
X. G.
,
2021
, “
Numerical Simulation of Vortex Instabilities in the Wake of a Preswirl Pumpjet Propulsor
,”
Phys. Fluids
,
33
(
5
), p.
055119
.10.1063/5.0039935
39.
Pang
,
A. L. J.
,
Skote
,
M.
, and
Lim
,
S. Y.
,
2016
, “
Modelling High Re Flow Around a 2D Cylindrical Bluff Body Using the k-ω (SST) Turbulence Model
,”
Prog. Comput. Fluid Dyn.
,
16
(
1
), pp.
48
57
.10.1504/PCFD.2016.074225
40.
Kan
,
K.
,
Chen
,
H. X.
,
Zheng
,
Y.
,
Zhou
,
D. Q.
,
Binama
,
M.
, and
Dai
,
J.
,
2021
, “
Transient Characteristics During Power-Off Process in a Shaft Extension Tubular Pump by Using a Suitable Numerical Model
,”
Renewable Energy
,
164
, pp.
109
121
.10.1016/j.renene.2020.09.001
41.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
42.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
43.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
44.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Han
,
L.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manag.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
45.
Duan
,
L.
,
Wu
,
X. L.
,
Ji
,
Z. L.
, and
Fang
,
Q. X.
,
2015
, “
Entropy Generation Analysis on Cyclone Separators With Different Exit Pipe Diameters and Inlet Dimensions
,”
Chem. Eng. Sci.
,
138
, pp.
622
633
.10.1016/j.ces.2015.09.003
46.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
47.
Cheng
,
H. Y.
,
Long
,
X. P.
,
Liang
,
Y. Z.
,
Long
,
Y.
, and
Ji
,
B.
,
2018
, “
URANS Simulations of the Tip-Leakage Cavitating Flow With Verification and Validation Procedures
,”
J. Hydrodyn.
,
30
(
3
), pp.
531
534
.10.1007/s42241-018-0038-1
48.
Chen
,
H. X.
,
Zhou
,
D. Q.
,
Kan
,
K.
,
Xu
,
H.
,
Zheng
,
Y.
,
Binama
,
M.
,
Xu
,
Z.
, and
Feng
,
J. G.
,
2021
, “
Experimental Investigation of a Model Bulb Turbine Under Steady State and Load Rejection Process
,”
Renewable Energy
,
169
, pp.
254
265
.10.1016/j.renene.2021.01.014
49.
Kan
,
K.
,
Zhang
,
Q. Y.
,
Xu
,
Z.
,
Zheng
,
Y.
,
Gao
,
Q.
, and
Shen
,
L.
,
2022
, “
Energy Loss Mechanism Due to Tip Leakage Flow of Axial Flow Pump as Turbine Under Various Operating Conditions
,”
Energy
,
255
, p.
124532
.10.1016/j.energy.2022.124532
50.
Liu
,
Y. B.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
You do not currently have access to this content.