Abstract

An inherently steady separated flow of a nanofluid around a two-dimensional circular object can be transformed into an unsteady periodic flow by controlling the nanoparticle concentration. This has been established in the contemporary literature 2022 by Garai et al. (2022, “Triggering Vortex Shedding for the Free Stream Flow of Nanofluids Around Bluff Objects,” ASME J. Fluids Eng., 144(3), p. 034502.) using Cu–H2O and Ag–H2O nanofluids, where the base fluids remain the same (H2O) and the nanoparticles are different (Cu, Ag). However, it may be anticipated that changing the base fluid may cause certain alterations in the flow dynamics. Two different base fluids, e.g., propylene glycol (C3H8O2) and ethylene glycol (C2H6O2) are selected in which copper (Cu) nanoparticles are mixed to produce Cu–C3H8O2 and Cu–C2H6O2 nanofluids. The nanofluids flow over a circular object with Reynolds number in the range 15Re40. The Cu nanoparticle concentration is gradually increased and it is observed that the vortex shedding can be initiated with a lesser concentration of Cu in case of C3H8O2 based nanofluid compared to C2H6O2 and also H2O based nanofluids. Hence, the critical solid volume fractions (φcr) for Cu–C2H6O2 based nanofluid are more compared to Cu–C3H8O2 and Cu–H2O nanofluids. Further, φcr for all the nanofluids are found a decreasing function of Re in its chosen range. The critical solid fraction is estimated from an extended Stuart–Landau model and the phenomena are demonstrated qualitatively through the streamlines and vorticity contours and quantitatively through the lift signal analysis and phase diagrams. Finally, a regime diagram is constructed to demarcate the steady and unsteady zones of operation.

References

1.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Effect of Aiding and Opposing Buoyancy on the Heat and Fluid Flow Across a Square Cylinder at Re = 100
,”
Numer. Heat Transfer, Part A
,
45
(
6
), pp.
601
624
.10.1080/10407780490277798
2.
Gandikota
,
G.
,
Amiroudine
,
S.
,
Chatterjee
,
D.
, and
Biswas
,
G.
,
2010
, “
Effect of Aiding/Opposing Buoyancy on Two-Dimensional Laminar Flow and Heat Transfer Across a Circular Cylinder
,”
Numer. Heat Transfer, Part A
,
58
(
5
), pp.
385
402
.10.1080/10407782.2010.505167
3.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2014
, “
Control of Flow Separation Around Bluff Obstacles by Superimposed Thermal Buoyancy
,”
Int. J. Heat Mass Transfer
,
72
, pp.
128
138
.10.1016/j.ijheatmasstransfer.2014.01.013
4.
Singha
,
S.
,
Sinhamahapatra
,
K. P.
, and
Mukherjea
,
S. K.
,
2007
, “
Control of Vortex Shedding From a Bluff Body Using Imposed Magnetic Field
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
517
523
.10.1115/1.2717616
5.
Chatterjee
,
D.
,
Chatterjee
,
K.
, and
Mondal
,
B.
,
2012
, “
Control of Flow Separation Around Bluff Obstacles by Transverse Magnetic Field
,”
ASME J. Fluids Eng.
,
134
, p.
091102
.10.1115/1.4007316
6.
Chatterjee
,
D.
, and
Gupta
,
S. K.
,
2015
, “
MHD Flow and Heat Transfer Behind a Square Cylinder in a Duct Under Strong Axial Magnetic Field
,”
Int. J. Heat Mass Transfer
,
88
, pp.
1
13
.10.1016/j.ijheatmasstransfer.2015.04.053
7.
Stojkovic
,
D.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder
,”
Phys. Fluids
,
14
(
9
), pp.
3160
3178
.10.1063/1.1492811
8.
Mittal
,
S.
, and
Kumar
,
B.
,
2003
, “
Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
476
, pp.
303
334
.10.1017/S0022112002002938
9.
Sarkar
,
S.
,
Ganguly
,
S.
,
Dalal
,
A.
,
Saha
,
P.
, and
Chakraborty
,
S.
,
2013
, “
Mixed Convective Flow Stability of Nanofluids Past a Square Cylinder by Dynamic Mode Decomposition
,”
Int. J. Heat Fluid Flow
,
44
, pp.
624
634
.10.1016/j.ijheatfluidflow.2013.09.004
10.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
, pp.
433
450
.10.1016/j.ijheatmasstransfer.2012.12.032
11.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluid With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
12.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
,
2003
, “
Spreading of Nanofluids on Solids
,”
Nature
,
423
(
6936
), pp.
156
159
.10.1038/nature01591
13.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
,
2004
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
,
34
(
1
), pp.
219
246
.10.1146/annurev.matsci.34.052803.090621
14.
Aydin
,
D. Y.
,
Guru
,
M.
,
Sozen
,
A.
, and
Ciftc
,
E.
,
2020
, “
Investigation of the Effects of Base Fluid Type of the Nanofluid on Heat Pipe Performance
,”
Proc. Inst. Mech. Eng., Part A
,
235
(
1
), pp.
1
15
.10.1177/0957650920916285
15.
Waeli
,
A. H. A.
,
Al
,
M. T.
,
Chaichan
,
K.
,
Sopian
,
H.
, and
Kazem
,
A.
,
2018
, “
Influence of the Base Fluid on the Thermo-Physicalproperties of PV/T Nanofluids With Surfactant
,”
Case Stud. Therm. Eng.
,
13
(
3
), p.
30284
.10.1016/j.csite.2018.10.001
16.
Krishnan
,
R. Y.
,
Manikandan
,
S.
,
Suganthi
,
K. S.
,
Vinodhan
,
V. L.
, and
Rajan
,
K. S.
,
2016
, “
Novel Copper—Propylene Glycol Nanofluid as Efficient Thermic Fluid for Potential Application in Discharge Cycle of Thermal Energy Storage
,”
Energy
,
107
, pp.
482
492
.10.1016/j.energy.2016.04.047
17.
Salman
,
B. H.
,
Mohammed
,
H. A.
, and
Kherbeet
,
A. S.
, 2016, “
The Effect of Base Fluid Type in Nanofluids for Heat Transfer Enhancement in Microtubes
,”
Appl. Mech. Mater.
, 818 (1), pp.
12
22
.10.4028/www.scientific.net/AMM.818.12
18.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
19.
Suganthi
,
K. S.
,
Radhakrishnan
,
A. K.
,
Anusha
,
N.
, and
Rajan
,
K. S.
,
2014
, “
Influence of Nanoparticle Concentration on Thermophysical Properties of CuO–Propylene Glycol Nanofluids
,”
J. Nanosci. Nanotechnol.
,
14
(
6
), pp.
4602
4607
.10.1166/jnn.2014.8657
20.
Wang
,
X. W.
,
Choi
,
S. U. S.
, and
Xu
,
X. F.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.10.2514/2.6486
21.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
22.
Allain
,
C.
,
Cloitre
,
M.
, and
Wafra
,
M.
,
1995
, “
Aggregation and Sedimentation in Colloidal Suspensions
,”
Phys. Rev. Lett.
,
74
(
8
), pp.
1478
1481
.10.1103/PhysRevLett.74.1478
23.
Allouni
,
Z. E.
,
Cimpan
,
M. R.
,
Hol
,
P. J.
,
Skodvin
,
T.
, and
Gjerdet
,
N. R.
,
2009
, “
Agglomeration and Sedimentation of TiO2 Nanoparticles in Cell Culture Medium
,”
Colloids Surf., B
,
68
(
1
), pp.
83
87
.10.1016/j.colsurfb.2008.09.014
24.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.10.1063/1.2356113
25.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Patil
,
S. L.
,
2007
, “
Effect of Temperature on Rheological Properties of Copper Oxide Nanoparticles Dispersed in Propylene Glycol and Water Mixture
,”
J. Nanosci. Nanotechnol.
,
7
(
7
), pp.
2318
2322
.10.1166/jnn.2007.437
26.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
27.
Ganguly
,
S.
, and
Chakraborty
,
S.
,
2009
, “
Effective Viscosity of Nanoscale Colloidal Suspensions
,”
J. Appl. Phys.
,
106
(
12
), p.
124309
.10.1063/1.3270423
28.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
29.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
30.
Garai
,
S.
,
Chatterjee
,
D.
, and
Mondal
,
B.
,
2022
, “
Triggering Vortex Shedding for the Free Stream Flow of Nanofluids Around Bluff Objects
,”
ASME J. Fluids Eng.
,
144
(
3
), p. 034502.10.1115/1.4052471
31.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
(
1
), pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
32.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
33.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspension in Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
34.
ANSYS FLUENT 13 User's Guide,
2013
,
Ansys Fluent Theory Guide
,
ANSYS, Canonsburg, PA
.
35.
Valipour
,
M. S.
, and
Ghadi
,
A. Z.
,
2011
, “
Numerical Investigation of Fluid Flow and Heat Transfer Around a Solid Circular Cylinder Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1296
1304
.10.1016/j.icheatmasstransfer.2011.06.007
36.
Leweke
,
T.
, and
Provansal
,
M.
,
1994
, “
Model for Transition in Bluff Body Wakes
,”
Phys. Rev. Lett.
,
72
(
20
), pp.
3174
3177
.10.1103/PhysRevLett.72.3174
37.
Dušek
,
J.
,
Gal
,
P. L.
, and
Fraunié
,
P.
,
1994
, “
A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake
,”
J. Fluid Mech.
,
264
, pp.
59
80
.10.1017/S0022112094000583
38.
Landau
,
L. D.
,
Lifshitz
,
E. M.
, and
Mechanics
,
F.
,
1959
,
Course of Theoretical Physics
, Vol.
6
,
Pergamon Press
,
London
.
You do not currently have access to this content.