Abstract

A simple modification of the dissipation equation is proposed for augmented Reynolds stress models (RSM) devoted to the prediction of buoyancy-driven turbulent mixing at interfaces. It is based on the partition of the kinetic energy into a “directed” large-scale part related to the turbulence mass flux and a “nondirected” small-scale part internal to the interpenetrating fluid structures. Such a partition is a cornerstone of some two-fluid models but does not appear naturally in the RSM framework. Conditional averaging on the concentration is used as a simple way to provide an equivalent decomposition with the variables available in the augmented RSM. Defining a dissipation equation mimicking the “nondirected” energy rather than the full kinetic energy does not introduce any new coefficient, preserves the properties of the original RSM, and improves its transient behavior in response to a sudden acceleration of the flow. Connections can finally be drawn between the resulting model and two-scale models.

References

1.
Davydov
,
B. I.
,
1961
, “
On Statistical Dynamics of an Incompressible Turbulent Flow
,”
Sov. Phys. Dokl.
,
6
, pp.
10
12
.
2.
Spalart
,
P.
,
2015
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.10.1016/j.paerosci.2014.12.004
3.
Schiestel
,
R.
,
1987
, “
Multiple-Time-Scale Modeling of Turbulent Flows in One-Point Closures
,”
Phys. Fluids
,
30
(
3
), pp.
722
731
.10.1063/1.866322
4.
Canuto
,
V. M.
,
Cheng
,
Y.
, and
Howard
,
A. M.
,
2010
, “
An Attempt to Derive the ε Equation From a Two-Point Closure
,”
J. Atmos. Sci.
,
67
(
5
), pp.
1678
1685
.10.1175/2009JAS3290.1
5.
Besnard
,
D.
,
Harlow
,
F.
,
Rauenzahn
,
R.
, and
Zemach
,
C.
,
1992
, “
Turbulence Transport Equations for Variable-Density Turbulence and Their Relationship to Two-Field Models
,”
Los Alamos National Laboratory
, Los Alamos, NM, Report No.
LA-UR-12303
.10.2172/7271399
6.
Morgan
,
B.
, and
Wickett
,
M.
,
2015
, “
Three-Equation Model for the Self-Similar Growth of Rayleigh-Taylor and Richtmyer-Meskov Instabilities
,”
Phys. Rev. E
,
91
(
4
), p.
043002
.10.1103/PhysRevE.91.043002
7.
Morgan
,
B.
,
Olson
,
B.
,
Black
,
W.
, and
McFarland
,
J.
,
2018
, “
Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Modeling of a Reacting Rayleigh-Taylor Mixing Layer in a Spherical Geometry
,”
Phys. Rev. E
,
98
(
3
), p.
033111
.10.1103/PhysRevE.98.033111
8.
Schwarzkopf
,
J.
,
Livescu
,
D.
,
Gore
,
R.
,
Rauenzahn
,
R.
, and
Ristorcelli
,
J.
,
2011
, “
Application of a Second-Moment Closure Model to Mixing Processes Involving Multicomponent Miscible Fluids
,”
J. Turbul.
,
12
, p.
N49
.10.1080/14685248.2011.633084
9.
Grégoire
,
O.
,
Souffland
,
D.
, and
Gauthier
,
S.
,
2005
, “
A Second-Order Turbulence Model for Gaseous Mixtures Induced by Richtmyer-Meshkov Instability
,”
J. Turbul.
,
6
(
29
), p.
N29
.10.1080/14685240500307413
10.
Griffond
,
J.
, and
Soulard
,
O.
,
2014
, “
Evaluation of Augmented RSM for Interaction of Homogeneous Turbulent Mixture With Shock and Rarefaction Waves
,”
J. Turbul.
,
15
(
9
), pp.
569
595
.10.1080/14685248.2014.919395
11.
Youngs
,
D.
,
1994
, “
Numerical Simulation of Mixing by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Laser Particle Beams
,
12
(
4
), pp.
725
750
.10.1017/S0263034600008557
12.
Llor
,
A.
, and
Bailly
,
P.
,
2003
, “
A New Turbulent Two-Field Concept for Modeling Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz Mixing Layers
,”
Laser Particle Beams
,
21
(
3
), pp.
311
315
.10.1017/S0263034603213033
13.
Llor
,
A.
,
2005
,
Statistical Hydrodynamic Models for Developed Mixing Instability Flows
,
681
of Lecture Notes in Physics,
Springer
,
Berlin, Heidelberg
.
14.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing. I
,”
Phys. Rep.
,
720–722
, pp.
1
136
.10.1016/j.physrep.2017.07.005
15.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing. II
,”
Phys. Rep.
,
723–725
, pp.
1
160
.10.1016/j.physrep.2017.07.008
16.
Casey
,
D. T.
,
Smalyuk
,
V. A.
,
Tipton
,
R. E.
,
Pino
,
J. E.
,
Grim
,
G. P.
,
Remington
,
B. A.
,
Rowley
,
D. P.
, et al.,
2014
, “
Development of the CD Symcap Platform to Study Gas-Shell Mix in Implosions at the National Ignition Facility
,”
Phys. Plasmas
,
21
(
9
), p.
092705
.10.1063/1.4894215
17.
Müller
,
B.
,
2020
, “
Hydrodynamics of Core-Collapse Supernovae and Their Progenitors
,”
Living Rev. Comput. Astrophys
,
6
, p.
3
.10.1007/s41115-020-0008-5
18.
Gréa
,
B.-J.
,
Burlot
,
A.
,
Griffond
,
J.
, and
Llor
,
A.
,
2016
, “
Challenging Mix Models on Transients to Self-Similarity of Unstably Stratified Homogeneous Turbulence
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071204
.10.1115/1.4032533
19.
Griffond
,
J.
,
Gréa
,
B.-J.
, and
Soulard
,
O.
,
2014
, “
Unstably Stratified Homogeneous Turbulence as a Tool for Turbulent Mixing Modeling
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091201
.10.1115/1.4025675
20.
Gréa
,
B.-J.
, and
Soulard
,
O.
,
2019
, “
Incompressible Homogeneous Buoyancy-Driven Turbulence
,”
Turbulent Cascades II: Proceedings of the Euromech-ERCOFTAC Colloquium 589
,
M.
Gorokhovski
and
F. S.
Godeferd
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
113
124
.10.1007/978-3-030-12547-9
21.
Soulard
,
O.
,
Griffond
,
J.
, and
Gréa
,
B.-J.
,
2014
, “
Large-Scale Analysis of Self-Similar Unstably Stratified Homogeneous Turbulence
,”
Phys. Fluids
,
26
(
1
), p.
015110
.10.1063/1.4862445
22.
Burlot
,
A.
,
Gréa
,
B.-J.
,
Godeferd
,
F. S.
,
Cambon
,
C.
, and
Griffond
,
J.
,
2015
, “
Spectral Modelling of High Reynolds Number Unstably Stratified Homogeneous Turbulence
,”
J. Fluid Mech.
,
765
(
2
), pp.
17
44
.10.1017/jfm.2014.726
23.
Burlot
,
A.
,
Gréa
,
B.-J.
,
Godeferd
,
F. S.
,
Cambon
,
C.
, and
Soulard
,
O.
,
2015
, “
Large Reynolds Number Self-Similar States of Unstably Stratified Homogeneous Turbulence
,”
Phys. Fluids
,
27
(
6
), p.
065114
.10.1063/1.4922817
24.
Griffond
,
J.
,
Gréa
,
B.-J.
, and
Soulard
,
O.
,
2015
, “
Numerical Investigation of Self-Similar Unstably Stratified Homogeneous Turbulence
,”
J. Turbul.
,
16
(
2
), pp.
167
183
.10.1080/14685248.2014.979351
25.
Godeferd
,
F.
, and
Staquet
,
C.
,
2003
, “
Statistical Modelling and Direct Numerical Simulations of Decaying Stably Stratified Turbulence. Part 2. Large-Scale and Small-Scale Anisotropy
,”
J. Fluid Mech.
,
486
, pp.
115
159
.10.1017/S0022112003004531
26.
Gréa
,
B.-J.
,
Burlot
,
A.
,
Godeferd
,
F.
,
Griffond
,
J.
,
Soulard
,
O.
, and
Cambon
,
C.
,
2016
, “
Dynamics and Structure of Unstably Stratified Homogeneous Turbulence
,”
J. Turbul.
,
17
(
7
), pp.
651
663
.10.1080/14685248.2016.1169281
27.
Kurien
,
S.
, and
Pal
,
N.
,
2022
, “
The Local Wavenumber Model for Computation of Turbulent Mixing
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
380
(
2219
), p.
20210076
.10.1098/rsta.2021.0076
28.
Griffond
,
J.
,
Soulard
,
O.
, and
Souffland
,
D.
,
2010
, “
A Turbulent Mixing Reynolds Stress Model Fitted to Match Linear Interaction Analysis Predictions
,”
Phys. Scr.
,
T142
, p.
014059
.10.1088/0031-8949/2010/T142/014059
29.
Klimenko
,
A.
, and
Bilger
,
R.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
25
(
6
), pp.
595
687
.10.1016/S0360-1285(99)00006-4
30.
Grégoire
,
O.
,
Souffland
,
D.
,
Gauthier
,
S.
, and
Schiestel
,
R.
,
1999
, “
A Two-Time-Scale Turbulence Model for Compressible Flows: Turbulence Dominated by Mean Deformation Interaction
,”
Phys. Fluids
,
11
(
12
), pp.
3793
3807
.10.1063/1.870222
31.
Souffland
,
D.
,
Grégoire
,
O.
,
Gauthier
,
S.
, and
Schiestel
,
R.
,
2002
, “
A Two-Time-Scale Model for Turbulent Mixing Flows Induced by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Flow, Turbul. Combust.
,
69
(
2
), pp.
123
160
.10.1023/A:1024709022920
32.
Morgan
,
B.
,
Schilling
,
O.
, and
Hartland
,
T.
,
2018
, “
Two-Length-Scale Turbulence Model for Self-Similar Buoyancy-, Shock-, and Shear-Driven Mixing
,”
Phys. Rev. E
,
97
(
1
), p.
013104
.10.1103/PhysRevE.97.013104
33.
Schwarzkopf
,
J.
,
Livescu
,
D.
,
Baltzer
,
J.
,
Gore
,
R.
, and
Ristorcelli
,
J.
,
2016
, “
A Two-Length Scale Turbulence Model for Single-Phase Multi-Fluid Mixing
,”
Flow Turbul. Combust
,
96
(
1
), pp.
1
43
.10.1007/s10494-015-9643-z
34.
Cadiou
,
A.
,
Hanjali
,
K.
, and
Stawiarski
,
K.
,
2004
, “
A Two-Scale Second-Moment Turbulence Closure Based on Weighted Spectrum Integration
,”
Theory Comput. Fluid Dyn.
,
18
(
1
), pp.
1
26
.10.1007/s00162-004-0118-4
35.
Soulard
,
O.
,
Griffond
,
J.
, and
Souffland
,
D.
,
2012
, “
Pseudocompressible Approximation and Statistical Turbulence Modeling: Application to Shock Tube Flows
,”
Phys. Rev. E
,
85
(
2
)Feb., p.
026307
.10.1103/PhysRevE.85.026307
36.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
37.
Souffland
,
D.
,
Soulard
,
O.
, and
Griffond
,
J.
,
2014
, “
Modeling of Reynolds Stress Models for Diffusion Fluxes Inside Shock Waves
,”
ASME J. Fluids Eng.
,
136
, p.
091102
.10.1115/1.4027381
You do not currently have access to this content.