Abstract

Flow alteration using the bio-inspired riblet structure is a fascinating field of study resulting in drag benefits. Riblets have no power requirement being a passive method. This work aims to study the effect of riblets on flow and drag behavior using both experimental and numerical analysis. The experiments are performed using a flush mount shear stress probe (FMSSP) and constant temperature anemometry (CTA). FMSSP is a novel technique to measure stress without obstructing the flow. The study is done on longitudinal streamwise sawtooth-shaped riblet with a maximum Reynolds number (Re) of 1.68 × 105. Three-dimensional numerical modeling of the riblet structure over a smooth wall is analyzed to study the mechanism responsible for drag-reducing behavior. A maximum reduction of 13.2% in shear stress is observed in the study. The result infers an upward shift in the velocity profile relative to the smooth wall in the near-wall region. Due to riblets, large-scale structures breakdown near the wall and better mixing are observed above the surface. Near-wall vortices are imparted a movement away from the wall due to the riblet tip, thus mitigating the near-wall fluctuations. Along with this, drag-reducing riblets hamper the cross-flow near the wall, thus further decreasing the turbulence intensity. Results suggest that turbulent kinetic energy (TKE) has a similar trend to the drag reduction characteristic near the wall. The finding ascertains the potential application of the riblets for real-life settings.

References

1.
Lecordier
,
J. C.
,
Hamma
,
L.
, and
Paranthoen
,
P.
,
1991
, “
The Control of Vortex Shedding Behind Heated Cylinders at Low Reynolds Numbers
,”
Exp. Fluids
,
10
(
4
), pp.
224
229
.10.1007/BF00190392
2.
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2016
, “
Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091104
.10.1115/1.4033295
3.
Dhanak
,
M. R.
, and
Si
,
C.
,
1999
, “
On Reduction of Wall Friction Through Spanwise Oscillations
,”
J. Fluid Mech.
,
383
, pp.
175
195
.10.1017/S0022112098003784
4.
Karniadakis
,
G. E.
, and
Choi
,
K. S.
,
2003
, “
Mechanisms on Transverse Motions in Turbulent Wall Flows
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
45
62
.10.1146/annurev.fluid.35.101101.161213
5.
Chauhan
,
M. K.
,
Dutta
,
S.
,
More
,
B. S.
, and
Gandhi
,
B. K.
,
2018
, “
Experimental Investigation of Flow Over a Square Cylinder With an Attached Splitter Plate at Intermediate Reynolds Number
,”
J. Fluids Struct.
,
76
, pp.
319
335
.10.1016/j.jfluidstructs.2017.10.012
6.
Sharma
,
K. R.
, and
Dutta
,
S.
,
2020
, “
Flow Control Over a Square Cylinder Using Attached Rigid and Flexible Splitter Plate at Intermediate Flow Regime
,”
Phys. Fluids
,
32
(
1
), p.
014104
.10.1063/1.5127905
7.
Kwon
,
K.
, and
Choi
,
H.
,
1996
, “
Control of Laminar Vortex Shedding Behind a Circular Cylinder Using Splitter Plates
,”
Phys. Fluids
,
8
(
2
), pp.
479
486
.10.1063/1.868801
8.
Martin
,
S.
, and
Bhushan
,
B.
,
2016
, “
Modeling and Optimization of Shark-Inspired Riblet Geometries for Low Drag Applications
,”
J. Colloid Interface Sci.
,
474
, pp.
206
215
.10.1016/j.jcis.2016.04.019
10.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
Van der Hoeven
,
J. G. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.10.1017/S0022112096004673
11.
Walsh
,
M. J.
, and
Weinstein
,
L. M.
,
1978
, “
Drag and Heat Transfer on Surfaces With Small Longitudinal Fins
,”
AIAA
Paper No. 78–1161.
12.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,”
Naturwissenschaften
,
87
(
4
), pp.
157
171
.10.1007/s001140050696
13.
Bechert
,
D. W.
, and
Hage
,
W.
,
2006
, “
Drag Reduction With Riblets in Nature and Engineering
,”
WIT Trans. State Art Sci. Eng.
,
4
, pp.
458
469
.10.2495/1-84564-095-0/5g
14.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
.10.1007/s003480050400
15.
Walsh
,
M. J.
, and
Lindemann
,
A. M.
,
1984
, “
Optimization and Application of Riblets for Turbulent Drag Reduction
,”
AIAA J.
,
347
, pp.
1
11
.10.2514/6.1984-347
16.
Choi
,
K. S.
,
2000
, “
European Drag-Reduction Research—Recent Developments and Current Status
,”
Fluid Dyn. Res.
,
26
(
5
), pp.
325
335
.10.1016/S0169-5983(99)00030-1
17.
Dean
,
B.
, and
Bhushan
,
B.
,
2012
, “
The Effect of Riblets in Rectangular Duct Flow
,”
Appl. Surf. Sci.
,
258
(
8
), pp.
3936
3947
.10.1016/j.apsusc.2011.12.067
18.
Goldstein
,
D. B.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1995
, “
Direct Numerical Simulation of Turbulent Flow Over a Modeled Riblet Covered Surface
,”
J. Fluid Mech.
,
302
, pp.
333
376
.10.1017/S0022112095004125
19.
Benschop
,
H. O. G.
, and
Breugem
,
W.-P.
,
2017
, “
Drag Reduction by Herringbone Riblet Texture in Direct Numerical Simulations of Turbulent Channel Flow
,”
J. Turbul.
,
18
(
8
), pp.
717
759
.10.1080/14685248.2017.1319951
20.
Tian
,
L. M.
,
Ren
,
L. Q.
,
Liu Qing
,
P.
,
Han
,
Z. W.
, and
Jiang
,
X.
,
2007
, “
The Mechanism of Drag Reduction Around Bodies of Revolution Using Bionic Non-Smooth Surfaces
,”
J. Bionic Eng.
,
4
(
2
), pp.
109
116
.10.1016/S1672-6529(07)60022-5
21.
Martin
,
S.
, and
Bhushan
,
B.
,
2014
, “
Fluid Flow Analysis of a Shark-Inspired Microstructure
,”
J. Fluid Mech.
,
756
, pp.
5
29
.10.1017/jfm.2014.447
22.
Spazzini
,
P. G.
,
Iuso
,
G.
,
Onorato
,
M.
, and
Zurlo
,
N.
,
1999
, “
Design, Test and Validation of a Probe for Time-Resolved Measurement of Skin Friction
,”
Meas. Sci. Technol.
,
10
(
7
), pp.
631
639
.10.1088/0957-0233/10/7/309
23.
Sturzebecher
,
D.
,
Anders
,
S.
, and
Nitsche
,
W.
,
2001
, “
The Surface Hot Wire as a Means of Measuring Mean and Fluctuating Wall Shear Stress
,”
Exp. Fluids
,
31
(
3
), pp.
294
301
.10.1007/s003480100284
24.
Rohr
,
J. J.
,
Andersen
,
G. W.
,
Reidy
,
L. W.
, and
Hendricks
,
E. W.
,
1992
, “
A Comparison of the Drag-Reducing Benefits of Riblets in Internal and External Flows
,”
Exp. Fluids
,
13
(
6
), pp.
361
368
.10.1007/BF00223243
25.
Örlü
,
R.
, and
Vinuesa
,
R.
,
2020
, “
Instantaneous Wall-Shear-Stress Measurements: Advances and Application to Near-Wall Extreme Events
,”
Meas. Sci. Technol.
,
31
(
11
), p.
112001
.10.1088/1361-6501/aba06f
26.
Grek
,
G. R.
,
Kozlov
,
V. V.
, and
Titarenko
,
S. V.
,
1996
, “
Effects of Riblets on Vortex Development in the Wake Behind a Single Roughness Element in the Laminar Boundary Layer
,”
La Rech. Aerosp.
,
1
, pp.
1
9
.https://www.researchgate.net/publication/256482461_Effects_of_riblets_on_vortex_development_in_the_wake_behind_a_single_roughness_element_in_the_laminar_boundary_layer_on_a_flat_plate
27.
Lee
,
S. J.
, and
Lee
,
S. H.
,
2001
, “
Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface
,”
Exp. Fluids
,
30
(
2
), pp.
153
166
.10.1007/s003480000150
28.
Luchini
,
P.
,
Manzo
,
F.
, and
Pozzi
,
A.
,
1991
, “
Resistance of a Grooved Surface to Parallel Flow and Cross-Flow
,”
J. Fluid Mech.
,
228
, pp.
87
109
.10.1017/S0022112091002641
29.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1412
1427
.10.1098/rsta.2010.0359
30.
Lee
,
S. J.
, and
Jang
,
Y. G.
,
2005
, “
Control of Flow Around a NACA 0012 Airfoil With a Micro-Riblet Film
,”
J. Fluids Struct
,.,
20
(
5
), pp.
659
672
.10.1016/j.jfluidstructs.2005.03.003
31.
Chen
,
H. W.
,
Rao
,
F. G.
,
Shang
,
X. P.
,
Zhang
,
D. Y.
, and
Hagiwara
,
I.
,
2013
, “
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
,”
J. Bionic Eng.
,
10
(
3
), pp.
341
349
.10.1016/S1672-6529(13)60229-2
32.
Grek
,
G. R.
,
Kozlov
,
V. V.
,
Titarenko
,
S. V.
, and
Klingmann
,
B. G. B.
,
1995
, “
The Influence of Riblets on a Boundary Layer With Embedded Streamwise Vortices
,”
Phys. Fluids
,
7
(
10
), pp.
2504
2506
.10.1063/1.868694
33.
Choi
,
K. S.
,
1989
, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid Mech.
,
208
, pp.
417
458
.10.1017/S0022112089002892
34.
Boomsma
,
A.
, and
Sotiropoulos
,
F.
,
2015
, “
Riblet Drag Reduction in Mild Adverse Pressure Gradients: A Numerical Investigation
,”
Int. J. Heat Fluid Flow
,
56
, pp.
251
260
.10.1016/j.ijheatfluidflow.2015.07.022
35.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
,
London, UK
(Indian Reprint).
36.
ANSYS, 2019, “
ANSYS® Fluent Academic Research Mechanical, Release 19.1
,” Ansys Inc., Cannonsburg, PA.
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1299
1310
.http://servidor.demec.ufpr.br/CFD/bibliografia/Carlos%20Eduardo%20Americo/Refer%C3%AAncias%20Carlos%20Eduardo/Menter1994.pdf
38.
Launder
,
B. E.
, and
Li
,
S. P.
,
1993
, “
On the Prediction of Riblet Performance With Engineering Turbulence Models
,”
Appl. Sci. Res.
,
50
(
3–4
), pp.
283
298
.10.1007/BF00850562
39.
Saravi
,
S. S.
, and
Cheng
,
K.
,
2013
, “
A Review of Drag Reduction by Riblets and Micro-Textures in the Turbulent Boundary Layers
,”
Eur. Sci. J.
,
9
(
33
), pp.
62
81
.https://core.ac.uk/download/pdf/236415401.pdf
40.
Roache
,
J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
41.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin, Germany
.
42.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill Publication
, New York.
43.
Ludwieg
,
H.
,
1950
, Instrument for Measuring the Wall Shearing Stress of Turbulent Boundary Layer, National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA TM1284.
44.
Kim
,
T.
,
Lu
,
T. J.
, and
Song
,
S. J.
,
2016
,
Application of Thermo-Fluidic Measurement Techniques: An Introduction
,
Butterworth-Heinemann
, Oxford,
UK
.
45.
Park
,
S.
, and
Wallace
,
J. M.
,
1994
, “
Flow Alteration and Drag Reduction by Riblets in a Turbulent Boundary Layer
,”
AIAA J.
,
32
(
1
), pp.
31
38
.10.2514/3.11947
46.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
(
-1
), pp.
503
539
.10.1017/S0022112093002575
47.
Lee
,
S. J.
, and
Choi
,
Y. S.
,
2008
, “
Decrement of Spanwise Vortices by a Drag-Reducing Riblet Surface
,”
J. Turbul.
,
9
(
23
), pp.
1
15
.10.1080/14685240802251517
48.
Bandyopadhyay
,
P. R.
,
1986
, “
Review—Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction
,”
ASME J. Fluids Eng.
,
108
(
2
), pp.
127
140
.10.1115/1.3242552
49.
Liu
,
Q.
, and
Zhong
,
S.
,
Li
,
L.
,
2019
, “
Effects of Bio-Inspired Micro-Scale Surface Patterns on the Profile Losses in a Linear Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121006
.10.1115/1.4044612
50.
Jimenez
,
J.
, and
Pinelli
,
A.
,
1999
, “
The Autonomous Cycle of Near-Wall Turbulence
,”
J. Fluid Mech.
,
389
, pp.
335
359
.10.1017/S0022112099005066
You do not currently have access to this content.