Abstract

The efficiency of centrifugal pumps drops sharply when the flowrate is reduced below a threshold value. This is due to a profound change in the flow structure, characterized by a large of portion flow separation near the impeller blades and the formation of energy-intensive recirculation zones. So far, it is not clear how such flow separation may initiate and develop. This study combines state-of-the-art experiments and numerical simulations to explore the onset of flow separation in centrifugal impellers. In particular, a high-frequency particle image velocimetry (PIV) system is used to visualize the velocity field in impeller channels. The continuous relative velocity value and deviation angle relative to the blade surface are displayed before the stall inception conditions. Meanwhile, the validated numerical simulation method is used to compute the flow at similar experimental conditions. The results clearly show a cylindrical vortex band exists near the impeller shroud. As the flowrate decreases, the vortex grows gradually stronger, while moving to the junction between the impeller shroud and blade suction side, and then toward impeller hub along the blade suction side. This growing and moving vortex is the main cause of the flow separation near blade suction side observed in our experiments. Interestingly, the impeller head remains insensitive to this vortex until it causes the flowrate in the adjacent impeller channels to be redistributed. This led us to believe that stalled flow can be detected before it affects the hydrodynamic performances.

References

1.
Fu
,
S. F.
,
Zheng
,
Y.
,
Kan
,
K.
,
Chen
,
H. X.
,
Han
,
X. X.
,
Liang
,
X. L.
,
Liu
,
H. W.
, and
Tian
,
X. Q.
,
2020
, “
Numerical Simulation and Experimental Study of Transient Characteristics in an Axial Flow Pump During Start-Up
,”
Renewable Energy
,
146
, pp.
1879
1887
.10.1016/j.renene.2019.07.123
2.
Wang
,
C.
,
Feng
,
J. J.
,
Luo
,
X. Q.
,
Lu
,
J. L.
, and
Zhu
,
G. J.
,
2018
, “
Numerical Prediction of Rotating Stall in a Low-Specific Speed Centrifugal Pump
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
163
(
1
), p.
12091
.10.1088/1755-1315/163/1/012091
3.
Luo, X., Yang, J., and Song, L., 2022, Analysis and Research on Vibration Characteristics of Nuclear Centrifugal Pumps at Low Flow Rates,
Energy Reports
, 8, pp. 1273–1282.10.1016/j.egyr.2022.01.210
4.
Tanaka
,
H.
,
2011
, “
Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-Turbines
,”
Int. J. Fluid Mach. Syst.
,
4
(
2
), pp.
289
306
.10.5293/IJFMS.2011.4.2.289
5.
Zhang
,
N.
,
Gao
,
B.
,
Ni
,
D.
, and
Liu
,
X. K.
,
2021
, “
Coherence Analysis to Detect Unsteady Rotating Stall Phenomenon Based on Pressure Pulsation Signals of a Centrifugal Pump
,”
Mech. Syst. Signal Process.
,
148
, p.
107161
.10.1016/j.ymssp.2020.107161
6.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.10.1115/1.1524585
7.
Zhao
,
X. R.
,
Xiao
,
Y. X.
,
Wang
,
Z. W.
,
Luo
,
Y. Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.10.1115/1.4037973
8.
Yang, J., Pavesi, G., Yuan, S., Cavazzini, G., and Ardizzon, G.,
2015
, Experimental Characterization of a Pump–Turbine in Pump Mode at Hump Instability Region,
ASME J. Fluids Eng.
, 137(5), p. 051109.10.1115/1.4029572
9.
Feng
,
J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2009
, “
Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD
,”
J. Visualization
,
12
(
1
), pp.
65
72
.10.1007/BF03181944
10.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2008
, “
Time-Frequency Characterization of Rotating Instabilities in a Centrifugal Pump With a Vaned Diffuser
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
10
.10.1155/2008/202179
11.
Cheah
,
K. W.
,
Lee
,
T. S.
,
Winoto
,
S. H.
, and
Zhao
,
Z. M.
,
2007
, “
Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
8
.10.1155/2007/83641
12.
Pacot
,
O.
,
2014
, “
Computation of the Rotating Stall in a Pump-Turbine Using an Overset Finite Element Large Eddy Simulation Numerical Code
,” Ph.D. thesis,
École Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
13.
Krause
,
N.
,
Zähringer
,
K.
, and
Pap
,
E.
,
2005
, “
Time-Resolved Particle Imaging Velocimetry for the Investigation of Rotating Stall in a Radial Pump
,”
Exp. Fluids
,
39
(
2
), pp.
192
201
.10.1007/s00348-005-0935-2
14.
Westra
,
R. W.
,
Broersma
,
L.
,
van Andel
,
K.
, and
Kruyt
,
N. P.
,
2010
, “
PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
132
(
6
), p. 0
61104
.10.1115/1.4001803
15.
Paone
,
N.
,
Riethmuller
,
M.
, and
Braembussche
,
R. A.
,
1989
, “
Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry
,”
Exp. Fluids
,
7
(
6
), pp.
371
378
.10.1007/BF00193417
16.
Chen, B., Xiaojun, L., and Zuchao, Z., 2022, Time-Resolved Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of Unsteady Flow in a Centrifugal Impeller Passage, Frontiers in Energy Research,
epub
.10.3389/fenrg.2021.818232
17.
Wang
,
Y.
,
Yang
,
H.
,
Chen
,
B.
,
Gao
,
P.
,
Chen
,
H.
, and
Zhu
,
Z.
,
2019
, “
Analysis of Vortices Formed in Flow Passage of a Five-Bladed Centrifugal Water Pump by Means of PIV Method
,”
AIP Adv.
,
9
(
7
), p.
075011
.10.1063/1.5099530
18.
Tiwari
,
R.
,
Bordoloi
,
D. J.
, and
Dewangan
,
A.
,
2021
, “
Blockage and Cavitation Detection in Centrifugal Pumps From Dynamic Pressure Signal Using Deep Learning Algorithm
,”
Measurement
,
173
, p.
108676
.10.1016/j.measurement.2020.108676
19.
Guo
,
S. J.
, and
Yoshiyuki
,
M.
,
2005
, “
Experimental Investigations on Pressure Fluctuations and Vibration of the Impeller in a Centrifugal Pump With Vaned Diffusers
,”
JSME Int. J., Ser. B
,
48
(
1
), pp.
136
143
.10.1299/jsmeb.48.136
20.
Akinori
,
F.
, and
Hisasada
,
T.
,
2003
, “
Pressure Fluctuation in a Vaned Diffuser Downstream From a Centrifugal Pump Impeller
,”
Int. J. Rotating Mach.
,
9
(
4
), p.
907631
.
21.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2018
, “
Numerical Simulation of Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model
,”
Renewable Energy
,
115
, pp.
433
447
.10.1016/j.renene.2017.08.081
22.
Berten
,
S.
,
Dupont
,
P.
,
Fabre
,
L.
,
Kayal
,
M.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2009
, “
Experimental Investigation of Flow Instabilities and Rotating Stall in a High Energy Centrifugal Pump Stage
,”
ASME
Paper No. FEDSM2009-78562.10.1115/FEDSM2009-78562
23.
Wu
,
D.
,
Ren
,
Y.
,
Liu
,
H.
,
Mu
,
J.
, and
Jiang
,
L.
,
2015
, “
Experimental Investigation on Characteristics of Flow Instabilities in Centrifugal Pump Impeller Under Partial Load Conditions
,”
Adv. Mech. Eng.
,
6
, p.
604812
.10.1155/2014/604812
24.
Muntean
,
S.
,
Bosioc
,
A. I.
,
Drăghici
,
I.
, and
Anton
,
L. E.
,
2016
, “
Hydrodynamic Analysis of the Flow Field Induced by a Symmetrical Suction Elbow at the Pump Inlet
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
3
), p.
032014
.10.1088/1755-1315/49/3/032014
25.
Zhang
,
N.
,
Gao
,
B.
,
Li
,
Z.
,
Ni
,
D.
, and
Jiang
,
Q. F.
,
2018
, “
Unsteady Flow Structure and Its Evolution in a Low Specific Speed Centrifugal Pump Measured by PIV
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
133
144
.10.1016/j.expthermflusci.2018.04.013
26.
Wang
,
H.
, and
Tsukamoto
,
H.
,
2003
, “
Experimental and Numerical Study of Unsteady Flow in a Diffuser Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
767
778
.10.1115/1.1603305
27.
Liu
,
X. D.
,
Li
,
Y. J.
,
Liu
,
Z. Q.
, and
Yang
,
W.
,
2022
, “
Dynamic Stall Inception and Evolution Process Measured by High-Frequency PIV System in Low Specific Speed Impeller
,”
ASME J. Fluids Eng.
,
144
(
4
), p.
041504
.10.1115/1.4053166
28.
Mohammad
,
A.
,
Keith
,
W.
, and
David
,
T.
,
2013
, “
A Transition-Sensitive Hybrid RANS/LES Modeling Methodology for CFD Applications
,”
AIAA
Paper No. 2013-0995.10.2514/6.2013-0995
29.
Jadidi
,
M.
,
Bazdidi-Tehrani
,
F.
, and
Kiamansouri
,
M.
,
2018
, “
Scale-Adaptive Simulation of Unsteady Flow and Dispersion Around a Model Building: Spectral and POD Analyses
,”
J. Build. Perform. Simul.
,
11
(
2
), pp.
241
260
.10.1080/19401493.2017.1326165
30.
Liu
,
X. D.
,
Li
,
Y. J.
,
Liu
,
Z. Q.
,
Yang
,
W.
, and
Tao
,
R.
,
2022
, “
Dynamic Evolution Process of Rotating Stall Vortex Based on High-Frequency PIV System in Centrifugal Impeller
,”
Ocean Eng.
,
259
, p.
111944
.10.1016/j.oceaneng.2022.111944
You do not currently have access to this content.