Abstract

The aero-thermal behavior of surface microstructures is of wide relevance, especially given the development of additive manufacturing (AM). Of particular interest is the interaction between fluid flow and heat transfer. In this work, two contrasting configurations, a flat plate boundary layer and an array of hemispheric microstructures are examined at three wall-inflow temperature ratios (TR): cooled (TR = 0.5), adiabatic (TR = 1) and heated wall (TR = 1.5). Due to compensation between fluid viscosity and velocity gradient in the boundary layer, the heat transfer effects may appear deceptively small if judged using the common aerothermal parameters (Cf, Nu). The authors find instead the local Reynolds number to be more usefully indicative of such aerothermal interaction. The scale-resolving large eddy simulations (LES) simulations at a range of Reynolds numbers show that the cooled wall case is characterized by a markedly earlier transition which takes place at a much lower (by 50%) bulk flow Reynolds number compared to a near-adiabatic case. Furthermore, it is shown that the incompressible flow LES solutions fail to capture the early transition under the same cooling condition. Finally, a regrouping of the nondimensional parameters (CD, Nu) with TR is proposed leading to a more unified characterization for easier scaling of wall heat transfer effects in practical applications.

References

1.
Yaras
,
M. I.
,
2004
, “
Measurements of Surface-Roughness Effects on the Development of a Vortex Produced by an Inclined Jet in Cross-Flow
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
346
354
.10.1115/1.1758260
2.
Tachie
,
M. F.
,
Bergstrom
,
D. J.
, and
Balachandar
,
R.
,
2004
, “
Roughness Effects on the Mixing Properties in Open Channel Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
1025
1032
.10.1115/1.1792265
3.
Shin
,
J. H.
, and
Jin Song
,
S.
,
2015
, “
Pressure Gradient Effects on Smooth and Rough Surface Turbulent Boundary Layers-Part I: Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011203
.10.1115/1.4027474
4.
Shin
,
J. H.
, and
Jin Song
,
S.
,
2015
, “
Pressure Gradient Effects on Smooth- and Rough-Surface Turbulent Boundary Layers-Part II: Adverse Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011204
.10.1115/1.4027475
5.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111207
.10.1115/1.4005218
6.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.10.1115/1.4002990
7.
Yan
,
H.
,
Zhang
,
W.-M.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2015
, “
Effect of Three-Dimensional Surface Topography on Gas Flow in Rough Micronozzles
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051202
.10.1115/1.4029630
8.
Jeong
,
H.
, and
Song
,
S. J.
,
2022
, “
Surface Roughness Impact on Boundary Layer Transition and Loss Mechanisms Over a Flat-Plate Under a Low-Pressure Turbine Pressure Gradient
,”
ASME J. Turbomach.
,
144
(
1
), p.
011005
.10.1115/1.4051937
9.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.10.1115/1.2841411
10.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
ASME J. Turbomach.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
11.
Waigh
,
D.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.10.2514/2.491
12.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
.10.1115/1.1811101
13.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
14.
Chatzikyriakou
,
D.
,
Buongiorno
,
J.
,
Caviezel
,
D.
, and
Lakehal
,
D.
,
2015
, “
Dns and Les of Turbulent Flow in a Closed Channel Featuring a Pattern of Hemispherical Roughness Elements
,”
Int. J. Heat Fluid Flow
,
53
, pp.
29
43
.10.1016/j.ijheatfluidflow.2015.01.002
15.
Gramespacher
,
C.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2022
, “
The Influence of Deterministic Surface Roughness and Freestream Turbulence on Transitional Boundary Layers: Heat Transfer Distributions and a New Transition Onset Correlation
,”
ASME J. Turbomach.
,
144
(
4
), p.
041001
.10.1115/1.4052458
16.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using “Ra” to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.10.1115/1.4032280
17.
Kapsis
,
M.
, and
He
,
L.
,
2018
, “
Analysis of Aerothermal Characteristics of Surface Microstructures
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051104
.10.1115/1.4038667
18.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.10.1115/1.4032167
19.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2502
2513
.10.1016/j.ijheatmasstransfer.2017.01.095
20.
Ferster
,
K. K.
,
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Effects of Geometry, Spacing, and Number of Pin Fins in Additively Manufactured Microchannel Pin Fin Arrays
,”
ASME J. Turbomach.
,
140
(
1
), p.
011007
.10.1115/1.4038179
21.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
22.
Miao
,
X.
,
Zhang
,
Q.
,
Atkin
,
C.
,
Sun
,
Z.
, and
Li
,
Y.
,
2018
, “
Improving Purge Air Cooling Effectiveness by Engineered End-Wall Surface Structures-Part I: Duct Flow
,”
ASME J. Turbomach.
,
140
(
9
), p.
091001
.10.1115/1.4040853
23.
Jenny
,
P.
,
Lee
,
S.
, and
Tchelepi
,
H.
,
2003
, “
Multi-Scale Finite Volume Method for Elliptic Problems in Subsurface Flow Simulation
,”
J. Comput. Phys.
,
187
(
1
), pp.
47
67
.10.1016/S0021-9991(03)00075-5
24.
Errera
,
M.-P.
, and
Turpin
,
G.
,
2013
, “
Temporal Multiscale Strategies for Conjugate Heat Transfer Problems
,”
J. Coupled Syst. Multiscale Dyn.
,
1
(
1
), pp.
89
98
.10.1166/jcsmd.2013.1005
25.
He
,
L.
,
2018
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Methods Fluids
,
86
(
10
), pp.
655
678
.10.1002/fld.4472
26.
Kapsis
,
M.
,
He
,
L.
,
Li
,
Y. S.
,
Valero
,
O.
,
Wells
,
R.
,
Krishnababu
,
S.
,
Gupta
,
G.
,
Kapat
,
J.
, and
Schaenzer
,
M.
,
2020
, “
Multiscale Parallelized Computational Fluid Dynamics Modeling Toward Resolving Manufacturable Roughness
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021001
.10.1115/1.4045481
27.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.10.1016/S0142-727X(97)10014-5
28.
Fitt
,
A.
,
Forth
,
C.
,
Robertson
,
B.
, and
Jones
,
T.
,
1986
, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
159
164
.10.1016/0017-9310(86)90045-1
29.
Kays
,
W. M.
,
2011
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
.
30.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.10.2514/1.B35126
31.
Maffulli
,
R.
, and
He
,
L.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.10.1115/1.4036012
32.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
.10.1115/1.4026001
33.
Shadloo
,
M. S.
, and
Hadjadj
,
A.
,
2017
, “
Laminar-Turbulent Transition in Supersonic Boundary Layers With Surface Heat Transfer: A Numerical Study
,”
Numer. Heat Transfer, Part A Appl.
,
72
(
1
), pp.
40
53
.10.1080/10407782.2017.1353380
34.
Braslow
,
A. L.
,
1966
, “
A Review of Factors Affecting Boundary-Layer Transition
,” NASA, Washington, DC, Report No. D-3384.
35.
Buntin
,
D. A.
,
Maslov
,
A. A.
, and
Gromyko
,
Y. V.
,
2012
, “
The Effect of Temperature of a Cone Nose-Tip on the Spectra of Disturbances in the Hypersound Boundary Layer
,”
Tech. Phys. Lett.
,
100
, p.
241603
.10.1134/S1063785017100194
36.
Fedorov
,
A.
,
Soudakov
,
V.
,
Egorov
,
I.
,
Sidorenko
,
A.
,
Gromyko
,
Y.
,
Bountin
,
D.
,
Polivanov
,
P.
, and
Maslov
,
A.
,
2015
, “
High-Speed Boundary-Layer Stability on a Cone With Localized Wall Heating or Cooling
,”
AIAA J.
,
53
(
9
), pp.
2512
2524
.10.2514/1.J053666
37.
Zhu
,
Y.
,
Zhu
,
W.
,
Gu
,
D.
,
Lee
,
C.
, and
Smith
,
C.
,
2021
, “
Hypersonic Transition Over a Heated Wall
,”
Phys. Fluids
,
33
(
10
), p.
101706
.10.1063/5.0068157
38.
Schäfer
,
P.
,
Severin
,
J.
, and
Herwig
,
H.
,
1995
, “
The Effect of Heat Transfer on the Stability of Laminar Boundary Layers
,”
Int. J. Heat Mass Transfer
,
38
(
10
), pp.
1855
1863
.10.1016/0017-9310(94)00303-D
39.
Özgen
,
S.
,
2004
, “
Effect of Heat Transfer on Stability and Transition Characteristics of Boundary-Layers
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4697
4712
.10.1016/j.ijheatmasstransfer.2004.05.026
40.
Liepmann
,
H. W.
, and
Fila
,
G. H.
,
1947
, “
Investigations of Effects of Surface Temperature and Single Roughness Elements on Boundary-Layer Transition
,” NACA, Report No. 1196.
41.
Reshotko
,
E.
, and
Tumin
,
A.
,
2004
, “
Role of Transient Growth in Roughness-Induced Transition
,”
AIAA J.
,
42
(
4
), pp.
766
770
.10.2514/1.9558
42.
Arnal
,
D.
, and
Vermeersch
,
O.
,
2011
, “
Compressibility Effects on Laminar-Turbulent Boundary Layer Transition
,”
Int. J. Eng. Syst. Modell. Simul.
,
3
(
1/2
), pp.
26
35
.10.1504/IJESMS.2011.038747
43.
Rubini
,
R.
,
Maffulli
,
R.
, and
Arts
,
T.
,
2018
, “
Effect of the Gas to Wall Temperature Ratio on the Bypass Transition
,”
ASME
Paper No. GT2018-76214.10.1115/GT2018-76214
44.
Back
,
L. H.
,
Cuffel
,
R. F.
, and
Massier
,
P. F.
,
1969
, “
Laminar, Transition, and Turbulent Boundary-Layer Heat-Transfer Measurements With Wall Cooling in Turbulent Airflow Through a Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
91
(
4
), pp.
477
487
.10.1115/1.3580231
45.
He
,
L.
,
2021
, “
Averaging for High Fidelity Modeling - Toward Large Eddy Simulations in Multi-Passage Multi-Row Configurations
,”
ASME J. Turbomach.
,
143
(
2
), p.
021002
.10.1115/1.4049616
You do not currently have access to this content.