Abstract

Validation of a computational fluid dynamics (CFD) model used to simulate turbulent exchange in an anatomically detailed human upper airway with realistic breathing states is provided. Proper model validation is vital in confirming that temporal mixing and species distribution are accurate, therefore making the model useful in generalized turbulent mixing studies of the upper airway. Numerous levels of refinement were tested for time-step and mesh independence. Higher and lower rigor groups of modeling methodologies involved spatial discretization schemes, gradient reconstruction methods, transient formulations, and turbulence frameworks. A dual mesh independence study revealed that the rate of approach to mesh independence is a function of computational rigor and that multiple mesh independence studies should be carried out in parallel. The final validated model consisted of the finest mesh used in this study (8 × 106 cells), a time-step equating to 4000 timesteps per breath cycle, and higher rigor modeling methodologies. While its results were within the acceptable deviation from the experimental data, it was not as close as the model that utilized the coarsest mesh (∼2 × 106 cells), the fewest timesteps per breath cycle (128 timesteps per breath cycle), and lower rigor methodologies. Though the latter model was closer to the experimental data, it was proven to not be numerically independent, highlighting the importance of utilizing a myriad of metrics to prove numerical independence. Restricting independence studies to only using metrics from experimental comparisons is insufficient for proper validation.

References

1.
Piquilloud
,
L.
,
Olivier
,
P.-Y.
,
Richard
,
J.-C.
,
Thepot-Seegers
,
V.
,
Brochard
,
L.
,
Mercat
,
A.
, and
Beloncle
,
F.
,
2022
, “
High Flow Nasal Cannula Improves Breathing Efficiency and Ventilatory Ratio in COPD Patients Recovering From an Exacerbation
,”
J. Crit. Care
,
69
, p.
154023
.10.1016/j.jcrc.2022.154023
2.
Chen
,
X.
,
Tan
,
C.
, and
Jiang
,
H.
,
2023
, “
High-Flow Nasal Cannula Oxygen Therapy is Superior to Conventional Oxygen Therapy in Intensive Care Unit Patients After Extubation
,”
Am. J. Transl. Res.
,
15
(
2
), pp.
1239
1246
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006799/#:~:text=HFNC%20oxygen%20therapy%20is%20a,improve%20patients'%20OI%20and%20comfort
3.
Gedikloglu
,
M.
,
Gulen
,
M.
,
Satar
,
S.
,
Icen
,
Y. K.
,
Avci
,
A.
,
Yesiloglu
,
O.
, and
Karcioglu
,
O.
,
2022
, “
How to Treat Patients With Acute Respiratory Failure? Conventional Oxygen Therapy Versus High-Flow Nasal Cannula in the Emergency Department
,”
Hong Kong J. Emerg. Med.
,
29
(
2
), pp.
84
93
.10.1177/1024907919886245
4.
Rochwerg
,
B.
,
Granton
,
D.
,
Wang
,
D. X.
,
Einav
,
S.
, and
Burns
,
K. E. A.
,
2019
, “
High Flow Nasal Cannula Compared With Conventional Oxygen Therapy for Acute Hypoxemic Respiratory Failure: A Systematic Review and Meta-Analysis
,”
Intensive Care Med.
,
45
(
8
), pp.
1171
1171
.10.1007/s00134-019-05658-2
5.
Möller
,
W.
,
Feng
,
S.
,
Domanski
,
U.
,
Franke
,
K.-J.
,
Celik
,
G.
,
Bartenstein
,
P.
,
Becker
,
S.
,
Meyer
,
G.
,
Schmid
,
O.
,
Eickelberg
,
O.
,
Tatkov
,
S.
, and
Nilius
,
G.
,
2017
, “
Nasal High Flow Reduces Dead Space
,”
J. Appl. Physiol.
,
122
(
1
), pp.
191
197
.10.1152/japplphysiol.00584.2016
6.
Moore
,
C. P.
,
Katz
,
I. M.
,
Pichelin
,
M.
,
Caillibotte
,
G.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2019
, “
High Flow Nasal Cannula: Influence of Gas Type and Flow Rate on Airway Pressure and CO2 Clearance in Adult Nasal Airway Replicas
,”
Clinical Biomech.
,
65
, pp.
73
80
.10.1016/j.clinbiomech.2019.04.004
7.
Möller
,
W.
,
Celik
,
G.
,
Feng
,
S.
,
Bartenstein
,
P.
,
Meyer
,
G.
,
Eickelberg
,
O.
,
Schmid
,
O.
, and
Tatkov
,
S.
,
2015
, “
Nasal High Flow Clears Anatomical Dead Space in Upper Airway Models
,”
J. Appl. Physiol.
,
118
(
12
), pp.
1525
1532
.10.1152/japplphysiol.00934.2014
8.
Hebbink
,
R. H.
,
Duiverman
,
M. L.
,
Wijkstra
,
P. J.
, and
Hagmeijer
,
R.
,
2022
, “
Upper Airway Pressure Distribution During Nasal High-Flow Therapy
,”
Med. Eng. Phys.
,
104
, p.
103805
.10.1016/j.medengphy.2022.103805
9.
Parke
,
R. L.
,
Eccleston
,
M. L.
, and
Mcguinness
,
S. P.
,
2011
, “
The Effects of Flow on Airway Pressure During Nasal High-Flow Oxygen Therapy
,”
Respir. Care
,
56
(
8
), pp.
1151
1155
.10.4187/respcare.01106
10.
Moore
,
C. P.
,
Katz
,
I. M.
,
Caillibotte
,
G.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2019
, “
Correlation of High Flow Nasal Cannula Outlet Area With Gas Clearance and Pressure in Adult Upper Airway Replicas
,”
Clin. Biomech.
,
66
, pp.
66
73
.10.1016/j.clinbiomech.2017.11.003
11.
Wilkins
,
J. V.
,
Gardner
,
M. T.
,
Walenga
,
R.
,
Hosseini
,
S.
,
Longest
,
P. W.
, and
Golshahi
,
L.
,
2020
, “
Mechanistic Understanding of High Flow Nasal Cannula Therapy and Pressure Support With an In Vitro Infant Model
,”
Ann. Biomed. Eng.
,
48
(
2
), pp.
624
633
.10.1007/s10439-019-02377-z
12.
Golshahi
,
L.
,
Tian
,
G.
,
Azimi
,
M.
,
Son
,
Y.-J.
,
Walenga
,
R.
,
Longest
,
P. W.
, and
Hindle
,
M.
,
2013
, “
The Use of Condensational Growth Methods for Efficient Drug Delivery to the Lungs During Noninvasive Ventilation High Flow Therapy
,”
Pharm. Res.
,
30
(
11
), pp.
2917
2930
.10.1007/s11095-013-1123-3
13.
Adams
,
C. F.
,
Geoghegan
,
P. H.
,
Spence
,
C. J.
, and
Jermy
,
M. C.
,
2018
, “
Modelling Nasal High Flow Therapy Effects on Upper Airway Resistance and Resistive Work of Breathing
,”
Respir. Physiol. Neurobiol.
,
254
, pp.
23
29
.10.1016/j.resp.2018.03.014
14.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
15.
Xia
,
J.
,
Chang
,
J.
,
Liang
,
J.
,
Wang
,
Y.
, and
Wang
,
N.
,
2021
, “
Flow Field Analysis of Adult High-Flow Nasal Cannula Oxygen Therapy
,”
Complexity
,
2021
, pp.
1
11
.10.1155/2021/4981691
16.
Khamooshi
,
M.
,
Fletcher
,
D. F.
,
Salati
,
H.
,
Vahaji
,
S.
,
Gregory
,
S.
, and
Inthavong
,
K.
,
2022
, “
Computational Assessment of the Nasal Air Conditioning and Paranasal Sinus Ventilation From Nasal Assisted Breathing Therapy
,”
Phys. Fluids
,
34
(
5
), p.
051912
.10.1063/5.0090058
17.
Miller
,
T. L.
,
Saberi
,
B.
, and
Saberi
,
S.
,
2016
, “
Computational Fluid Dynamics Modeling of Extrathoracic Airway Flush: Evaluation of High Flow Nasal Cannula Design Elements
,”
J. Pulm. Respir. Med.
,
6
(
5
), p.
376
.
18.
Bu
,
F.
,
Chen
,
S.
,
Liu
,
Y.
,
Guan
,
B.
,
Wang
,
X.
,
Shi
,
Z.
, and
Hao
,
G.
,
2022
, “
CFD Analysis and Calculation Models Establishment of Leakage of Natural Gas Pipeline Considering Real Buried Environment
,”
Energy Rep.
,
8
, pp.
3789
3808
.10.1016/j.egyr.2022.03.007
19.
Fritsche
,
M.
,
Epple
,
P.
, and
Delgado
,
A.
,
2023
, “
Numerical and Theoretical Investigation of the Gap Flow in Centrifugal Fans for Design and Off-Design Conditions
,”
ASME J. Fluids Eng.
,
145
(
3
), p. 031203.10.1115/1.4056311
20.
Golla
,
S. T.
,
Jadhav
,
A. R.
,
Banerjee
,
R.
, and
Venkatesham
,
B.
,
2023
, “
Numerical Simulation of Hit Noise Generation Due to Sloshing Phenomenon in a Rectangular Tank Under Periodic Excitation
,”
ASME J. Fluids Eng.
,
145
(
3
), p. 031401.10.1115/1.4056208
21.
Kan
,
K.
,
Li
,
H.
,
Chen
,
H.
,
Xu
,
H.
,
Gong
,
Y.
,
Li
,
T.
, and
Shen
,
L.
,
2023
, “
Effects of Clearance and Operating Conditions on Tip Leakage Vortex-Induced Energy Loss in an Axial-Flow Pump Using Entropy Production Method
,”
ASME J. Fluids Eng.
,
145
(
3
), p. 031201.10.1115/1.4056119
22.
Jia
,
X.
,
Lv
,
H.
, and
Zhu
,
Z.
,
2023
, “
Research on the Influence of Impeller Tip Clearance on the Internal Flow Loss of Axial Circulating Pump Under Unpowered Driven Condition
,”
ASME J. Fluids Eng.
,
145
(
2
), p. 021202.10.1115/1.4055990
23.
Wang
,
X.
,
Zhang
,
J.
,
Huang
,
Z.
,
Wang
,
L.
,
Li
,
W.
, and
Lan
,
G.
,
2023
, “
Large Eddy Simulation on the Cavitation Flow and Noise Characteristics of a NACA0009 Hydrofoil With Different Tip Clearance Sizes
,”
ASME J. Fluids Eng.
,
145
(
1
), p. 011204.10.1115/1.4055542
24.
Alwafi
,
A. M.
,
Alshehri
,
S. M.
, and
Alzahrani
,
S. M.
,
2022
, “
Computational Fluid Dynamics Modeling of Single Isothermal and Non-Isothermal Impinging Jets in a Scaled-Down High-Temperature Gas-Cooled Reactor Facility
,”
Processes
,
11
(
1
), p.
46
.10.3390/pr11010046
25.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties and CFD Code Validation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
795
803
.10.1115/1.2819500
26.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and Paterson, E. G., 2001, “Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures,”
ASME J. Fluids Eng.
, 123(4), pp. 793–802.10.1115/1.1412235
27.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H. W.
, and Paterson, E. G., 2001, “Comprehensive Approach to Verification and Validation of CFD Simulations—Part 2: Application for Rans Simulation of a Cargo/Container Ship,”
ASME J. Fluids Eng.
, 123(4), pp. 803–810.10.1115/1.1412236
28.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p. 071005.10.1115/1.4004223
29.
Whiting
,
N. W.
,
Roy
,
C. J.
,
Duque
,
E.
,
Lawrence
,
S.
, and
Oberkampf
,
W. L.
,
2023
, “
Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty
,”
ASME J. Verif. Valid. Uncert. Quantif.
,
8
(
1
), p. 011001.10.1115/1.4056285
30.
Shrestha
,
K.
,
Van Strien
,
J.
,
Shang
,
Y.
,
Fletcher
,
D. F.
,
Petersen
,
P.
,
Vreugde
,
S.
,
Wormald
,
P. J.
,
Singh
,
N.
, and
Inthavong
,
K.
,
2022
, “
Effect of Breathing Profiles on Nebuliser Drug Delivery Targeting the Paranasal Sinuses in a Post-Operative Nasal Cavity
,”
J. Aerosol Sci.
,
161
, p.
105913
.10.1016/j.jaerosci.2021.105913
31.
Inthavong
,
K.
,
Ma
,
J.
,
Shang
,
Y.
,
Dong
,
J.
,
Chetty
,
A. S.
,
Tu
,
J.
, and
Frank-Ito
,
D.
,
2019
, “
Geometry and Airflow Dynamics Analysis in the Nasal Cavity During Inhalation
,”
Clin. Biomech.
,
66
, pp.
97
106
.10.1016/j.clinbiomech.2017.10.006
32.
Ma
,
Z.
,
Kourmatzis
,
A.
,
Milton-McGurk
,
L.
,
Chan
,
H.-K.
,
Farina
,
D.
, and
Cheng
,
S.
,
2022
, “
Simulating the Effect of Individual Upper Airway Anatomical Features on Drug Deposition
,”
Int. J. Pharm.
,
628
, p.
122219
.10.1016/j.ijpharm.2022.122219
33.
Inthavong
,
K.
,
Chetty
,
A.
,
Shang
,
Y.
, and
Tu
,
J.
,
2018
, “
Examining Mesh Independence for Flow Dynamics in the Human Nasal Cavity
,”
Comput. Biol. Med.
,
102
, pp.
40
50
.10.1016/j.compbiomed.2018.09.010
34.
Shi
,
H.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, “
Laminar Airflow and Nanoparticle or Vapor Deposition in a Human Nasal Cavity Model
,”
ASME J. Biomech. Eng.
, 128(5), pp.
697
706
.10.1115/1.2244574
35.
Strasser
,
W.
,
Kacinski
,
R.
, and
Wilson
,
D.
,
2023
,
It's About Time: Jet Interactions in an Asymmetrical Plenum
,
Nuclear Technology
, Milton, Abingdon, UK.
36.
Strasser
,
W.
,
2022
, “
The Nature of “Searching” Vortices in Fluidic Logic Driven by a Switching Jet
,”
ASME J. Fluids Eng.
,
144
(
8
), p. 081303.10.1115/1.4053786
37.
ANSYS
,
2022
,
ANSYS Fluid Dynamics Verification Manual
,
ANSYS
, Canonsburg, PA.
38.
Prichard
,
R.
,
Strasser
,
W.
, 2022, “A Novel HPC Scaling Optimization Methodology,”
Proceedings of 7th Thermal and Fluids Engineering Conference (
TFEC
), Las Vegas, NV, May 15–18, pp. 183-192.10.1615/TFEC2022.tfs.041416
39.
Kacinski
,
R.
,
Strasser
,
W.
, and
Leonard
,
S.
,
2023
, “
Characteristics of Flow in the Upper Airway During High Flow Nasal Cannula Oxygen Therapy
,” Proceeding of 8th Thermal and Fluids Engineering Conference (
TFEC
), College Park, MD, Mar. 26–29, pp.
193
201
.10.1615/TFEC2023.cnm.046138
40.
Strasser
,
W.
,
2010
, “
Cyclone-Ejector Coupling and Optimisation
,”
Prog. Comput. Fluid Dyn.
,
10
(
1
), pp.
19
31
.10.1504/PCFD.2010.030423
41.
Strasser
,
W.
,
Battaglia
,
F.
, and
Walters
,
K.
,
2015
, “
Application of a Hybrid RANS-LES CFD Methodology to Primary Atomization in a Coaxial Injector
,”
ASME
Paper No. IMECE2015-53028. 10.1115/IMECE2015-53028
42.
Islam
,
M. S.
,
Paul
,
G.
,
Ong
,
H. X.
,
Young
,
P. M.
,
Gu
,
Y. T.
, and
Saha
,
S. C.
,
2020
, “
A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition
,”
Int. J. Environ. Res. Public Health
,
17
(
2
), p.
380
.10.3390/ijerph17020380
43.
Hebbink
,
R. H.
,
Wessels
,
B. J.
,
Hagmeijer
,
R.
, and
Jain
,
K.
,
2023
, “
Computational Analysis of Human Upper Airway Aerodynamics
,”
Med. Biol. Eng. Comput.
,
61
(
2
), pp.
541
553
.10.1007/s11517-022-02716-8
44.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.10.1115/1.2436577
45.
Bienz
,
A.
,
Gropp
,
W. D.
, and
Olson
,
L. N.
,
2020
, “
Reducing Communication in Algebraic Multigrid With Multi-Step Node Aware Communication
,”
Int. J. High Perform. Comput. Appl.
,
34
(
5
), pp.
547
561
.10.1177/1094342020925535
46.
Poe
,
N. M. W.
, and
Keith Walters
,
D.
,
2012
, “
A Nonlocal Convective Flux Limiter for Upwind-Biased Finite Volume Simulations
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1103
1117
.10.1002/fld.2733
47.
Adedoyin
,
A. A.
,
Walters
,
K.
, and
Bhushan
,
S.
,
2015
, “
Investigation of Turbulence Model and Numerical Scheme Combinations for Practical Finite Volume Large Eddy Simulations
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
324
342
.10.1080/19942060.2015.1028151
You do not currently have access to this content.