Abstract

In this work, a new micro-electrode bubble generator is presented that employs a micro-electrode installed inside a small nozzle enabling the production of bubbles with controllable size and frequency. This bubble generator can be employed as a simple and potentially cheap method for the generation of single bubbles in a liquid, as long as it enables ion exchange, as an alternative to more complicated methods such as timely injection of a gas through a nozzle, which requires sophisticated nozzle design, manufacturing, and monitoring of the injected gas flow rate. A systematic investigation was conducted to assess the effect of the bubble generator dimensions, applied voltage, and electrolyte flow conditions on the size and frequency of the generated bubbles. It was shown that when the micro-electrode is thinly concealed within the nozzle, this bubble generator can successfully produce bubbles covering a wide range of diameters from 0.4 to 1.4 mm with a size distribution standard deviation of about 25%. The mechanism of single and continuous bubbles formation from the proposed bubble generator is also discussed. While this paper introduces this new micro-electrode bubble generator, further work is required to optimize it, enabling more accurate control over bubble size and frequency.

References

1.
Unger
,
E. C.
,
Porter
,
T.
,
Culp
,
W.
,
Labell
,
R.
,
Matsunaga
,
T.
, and
Zutshi
,
R.
,
2004
, “
Therapeutic Applications of Lipid-Coated Microbubbles
,”
Adv. Drug Delivery Rev.
,
56
(
9
), pp.
1291
1314
.10.1016/j.addr.2003.12.006
2.
Unger
,
E. C.
,
Matsunaga
,
T. O.
,
McCreery
,
T.
,
Schumann
,
P.
,
Sweitzer
,
R.
, and
Quigley
,
R.
,
2002
, “
Therapeutic Applications of Microbubbles
,”
Eur. J. Radiol.
,
42
(
2
), pp.
160
168
.10.1016/S0720-048X(01)00455-7
3.
Stride
,
E.
, and
Saffari
,
N.
,
2003
, “
Microbubble Ultrasound Contrast Agents: A Review
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
217
(
6
), pp.
429
447
.10.1243/09544110360729072
4.
van Wamel
,
W. J.
,
Rooijakkers
,
S. H.
,
Ruyken
,
M.
,
van Kessel
,
K. P.
, and
van Strijp
,
J. A.
,
2006
, “
The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on Beta-Hemolysin-Converting Bacteriophages
,”
J. Bacteriol.
,
188
(
4
), pp.
1310
1315
.10.1128/JB.188.4.1310-1315.2006
5.
Unger
,
E.
,
Matsunaga
,
T. O.
,
Zutshi
,
R.
,
Labell
,
R.
,
Porter
,
T. R.
,
Lof
,
J.
,
Xie
,
F.
,
Ferrara
,
K.
,
Dayton
,
P.
, and
Bloch
,
S.
,
2005
, “
Sonothrombolysis With Phospholipid-Coated Perfluoropropane Microbubbles
,”
AIP Conf. Proc.
, 754, pp.
58
61
.10.1063/1.1901599
6.
Schroers
,
J.
,
Veazey
,
C.
,
Demetriou
,
M. D.
, and
Johnson
,
W. L.
,
2004
, “
Synthesis Method for Amorphous Metallic Foam
,”
J. Appl. Phys.
,
96
(
12
), pp.
7723
7730
.10.1063/1.1818355
7.
Zhang
,
R.
,
Hu
,
R.
,
Li
,
X.
,
Zhen
,
Z.
,
Xu
,
Z.
,
Li
,
N.
,
He
,
L.
, and
Zhu
,
H.
,
2018
, “
A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials
,”
Adv. Funct. Mater.
,
28
(
23
), p.
1705879
.10.1002/adfm.201705879
8.
Agarwal
,
A.
,
Ng
,
W. J.
, and
Liu
,
Y.
,
2011
, “
Principle and Applications of Microbubble and Nanobubble Technology for Water Treatment
,”
Chemosphere
,
84
(
9
), pp.
1175
1180
.10.1016/j.chemosphere.2011.05.054
9.
Xu
,
Q.
,
Nakajima
,
M.
,
Ichikawa
,
S.
,
Nakamura
,
N.
, and
Shiina
,
T.
,
2008
, “
A Comparative Study of Microbubble Generation by Mechanical Agitation and Sonication
,”
Innovative Food Sci. Emerging Technol.
,
9
(
4
), pp.
489
494
.10.1016/j.ifset.2008.03.003
10.
Swiegers
,
G. F.
,
Hoang
,
A. L.
,
Hodges
,
A.
,
Tsekouras
,
G.
,
Lee
,
C.-Y.
,
Wagner
,
K.
, and
Wallace
,
G.
,
2022
, “
Current Status of Membraneless Water Electrolysis Cells
,”
Curr. Opin. Electrochem.
,
32
, p.
100881
.10.1016/j.coelec.2021.100881
11.
Davis
,
J. T.
,
Brown
,
D. E.
,
Pang
,
X.
, and
Esposito
,
D. V.
,
2019
, “
High Speed Video Investigation of Bubble Dynamics and Current Density Distributions in Membraneless Electrolyzers
,”
J. Electrochem. Soc.
,
166
(
4
), pp.
F312
F321
.10.1149/2.0961904jes
12.
Esposito
,
D. V.
,
2017
, “
Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future
,”
Joule
,
1
(
4
), pp.
651
658
.10.1016/j.joule.2017.07.003
13.
Gillespie
,
M. I.
,
van der Merwe
,
F.
, and
Kriek
,
R. J.
,
2015
, “
Performance Evaluation of a Membraneless Divergent Electrode-Flow-Through (DEFT) Alkaline Electrolyser Based on Optimisation of Electrolytic Flow and Electrode Gap
,”
J. Power Sources
,
293
, pp.
228
235
.10.1016/j.jpowsour.2015.05.077
14.
Sanada
,
T.
, and
Abe
,
K.
,
2013
, “
Generation of Single Bubbles of Various Sizes Using a Slitting Elastic Tube
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085106
.10.1063/1.4817313
15.
Kumar
,
R.
, and
Kuloor
,
N. I.
,
1970
, “
The Formation of Bubbles and Drops
,”
Advances in Chemical Engineering
,
T. B.
Drew
, et al.,
Academic Press
, Cambridge, pp.
255
368
.
16.
Kolev
,
N. I.
,
2007
, “
Bubble Departure Diameter
,”
Multiphase Flow Dynamics 2: Thermal and Mechanical Interactions
,
N. I.
Kolev
, ed.,
Springer
,
Berlin
, pp.
417
438
.
17.
Kim
,
Y. C.
,
Van Dang
,
B.
,
Taylor
,
R.
, and
Barber
,
T.
,
2021
, “
Controlled Generation of Single Microbubbles
,”
Exp. Fluids
,
62
(
10
), p. 220.10.1007/s00348-021-03324-2
18.
Evangelio
,
A.
,
Campo-Cortés
,
F.
, and
Gordillo
,
J. M.
,
2015
, “
Pressure Gradient Induced Generation of Microbubbles
,”
J. Fluid Mech.
,
778
, pp.
653
668
.10.1017/jfm.2015.408
19.
Vejrazka
,
J.
,
Fujasová
,
M.
,
Stanovsky
,
P.
,
Ruzicka
,
M. C.
, and
Drahoš
,
J.
,
2008
, “
Bubbling Controlled by Needle Movement
,”
Fluid Dyn. Res.
,
40
(
7–8
), pp.
521
533
.10.1016/j.fluiddyn.2007.12.008
20.
Bari
,
S. D.
, and
Robinson
,
A. J.
,
2013
, “
Experimental Study of Gas Injected Bubble Growth From Submerged Orifices
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
124
137
.10.1016/j.expthermflusci.2012.06.005
21.
Davidson
,
J. F.
, and
Schüler
,
B. O. G.
,
1997
, “
Bubble Formation at an Orifice in a Viscous Liquid
,”
Chem. Eng. Res. Des.
,
75
, pp.
S105
S115
.10.1016/S0263-8762(97)80008-1
22.
Najafi
,
A. S.
,
Xu
,
Z.
, and
Masliyah
,
J.
,
2008
, “
Single Micro-Bubble Generation by Pressure Pulse Technique
,”
Chem. Eng. Sci.
,
63
(
7
), pp.
1779
1787
.10.1016/j.ces.2007.12.013
23.
Parkinson
,
L.
,
Sedev
,
R.
,
Fornasiero
,
D.
, and
Ralston
,
J.
,
2008
, “
The Terminal Rise Velocity of 10-100 Microm Diameter Bubbles in Water
,”
J. Colloid Interface Sci.
,
322
(
1
), pp.
168
172
.10.1016/j.jcis.2008.02.072
24.
Zhang
,
D.
, and
Zeng
,
K.
,
2012
, “
Evaluating the Behavior of Electrolytic Gas Bubbles and Their Effect on the Cell Voltage in Alkaline Water Electrolysis
,”
Ind. Eng. Chem. Res.
,
51
(
42
), pp.
13825
13832
.10.1021/ie301029e
25.
Zeng
,
K.
, and
Zhang
,
D.
,
2010
, “
Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications
,”
Prog. Energy Combust. Sci.
,
36
(
3
), pp.
307
326
.10.1016/j.pecs.2009.11.002
26.
Yang
,
X.
,
Karnbach
,
F.
,
Uhlemann
,
M.
,
Odenbach
,
S.
, and
Eckert
,
K.
,
2015
, “
Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode
,”
Langmuir
,
31
(
29
), pp.
8184
8193
.10.1021/acs.langmuir.5b01825
27.
Li
,
X.
,
Walsh
,
F. C.
, and
Pletcher
,
D.
,
2011
, “
Nickel Based Electrocatalysts for Oxygen Evolution in High Current Density, Alkaline Water Electrolysers
,”
Phys. Chem. Chem. Phys.
,
13
(
3
), pp.
1162
1167
.10.1039/C0CP00993H
28.
Fernandez
,
D.
,
Maurer
,
P.
,
Martine
,
M.
,
Coey
,
J. M.
, and
Mobius
,
M. E.
,
2014
, “
Bubble Formation at a Gas-Evolving Microelectrode
,”
Langmuir
,
30
(
43
), pp.
13065
13074
.10.1021/la500234r
29.
Luo
,
L.
, and
White
,
H. S.
,
2013
, “
Electrogeneration of Single Nanobubbles at Sub-50-nm-Radius Platinum Nanodisk Electrodes
,”
Langmuir
,
29
(
35
), pp.
11169
11175
.10.1021/la402496z
30.
Bashkatov
,
A.
,
Hossain
,
S. S.
,
Yang
,
X.
,
Mutschke
,
G.
, and
Eckert
,
K.
,
2019
, “
Oscillating Hydrogen Bubbles at Pt Microelectrodes
,”
Phys. Rev. Lett.
,
123
(
21
), p.
214503
.10.1103/PhysRevLett.123.214503
31.
Fernández
,
D.
,
Martine
,
M.
,
Meagher
,
A.
,
Möbius
,
M. E.
, and
Coey
,
J. M. D.
,
2012
, “
Stabilizing Effect of a Magnetic Field on a Gas Bubble Produced at a Microelectrode
,”
Electrochem. Commun.
,
18
, pp.
28
32
.10.1016/j.elecom.2012.01.016
32.
Ohl
,
C. D.
,
2001
, “
Generator for Single Bubbles of Controllable Size
,”
Rev. Sci. Instrum.
,
72
(
1
), pp.
252
254
.10.1063/1.1329900
33.
Ostmann
,
S.
, and
Schwarze
,
R.
,
2018
, “
A Compact Device for the Deterministic Generation of Medium-Sized Bubbles
,”
Rev. Sci. Instrum.
,
89
(
12
), p.
125108
.10.1063/1.5048708
34.
Duhar
,
G.
, and
Colin
,
C.
,
2006
, “
Dynamics of Bubble Growth and Detachment in a Viscous Shear Flow
,”
Phys. Fluids
,
18
(
7
), p. 077101.10.1063/1.2213638
35.
Zhang
,
L.
, and
Shoji
,
M.
,
2001
, “
Aperiodic Bubble Formation From a Submerged Orifice
,”
Chem. Eng. Sci.
,
56
(
18
), pp.
5371
5381
.10.1016/S0009-2509(01)00241-X
36.
Abe
,
K.
, and
Sanada
,
T.
,
2015
, “
The Mechanism of Bubble Generation Using a Slit Elastic Tube and an Acoustic Pressure Wave in the Gas Phase
,”
Chem. Eng. Sci.
,
128
, pp.
28
35
.10.1016/j.ces.2015.01.037
37.
Lesage
,
F. J.
, and
Marois
,
F.
,
2013
, “
Experimental and Numerical Analysis of Quasi-Static Bubble Size and Shape Characteristics at Detachment
,”
Int. J. Heat Mass Transfer
,
64
, pp.
53
69
.10.1016/j.ijheatmasstransfer.2013.04.019
38.
Bolaños-Jiménez
,
R.
,
Sevilla
,
A.
,
Martínez-Bazán
,
C.
, and
Gordillo
,
J. M.
,
2008
, “
Axisymmetric Bubble Collapse in a Quiescent Liquid Pool. II. Experimental Study
,”
Phys. Fluids
,
20
(
11
), p. 112104.10.1063/1.3009298
39.
Yang
,
B.
,
Jafarian
,
M.
,
Freidoonimehr
,
N.
, and
Arjomandi
,
M.
,
2022
, “
Trajectory of a Spherical Bubble Rising in a Fully Developed Laminar Flow
,”
Int. J. Multiphase Flow
,
157
, p.
104250
.10.1016/j.ijmultiphaseflow.2022.104250
40.
Don
,
W. G.
, and
Robert
,
H. P.
,
2008
,
Perry's Chemical Engineers' Handbook
, 8th ed.,
McGraw-Hill Education
,
New York
.
41.
Zhou
,
D.
,
Li
,
P.
,
Xu
,
W.
,
Jawaid
,
S.
,
Mohammed‐Ibrahim
,
J.
,
Liu
,
W.
,
Kuang
,
Y.
, and
Sun
,
X.
,
2020
, “
Recent Advances in Non‐Precious Metal‐Based Electrodes for Alkaline Water Electrolysis
,”
ChemNanoMat
,
6
(
3
), pp.
336
355
.10.1002/cnma.202000010
42.
Atherton
,
T. J.
, and
Kerbyson
,
D. J.
,
1999
, “
Size Invariant Circle Detection
,”
Image Vis. Comput.
,
17
(
11
), pp.
795
803
.10.1016/S0262-8856(98)00160-7
43.
Yuen
,
H. K.
,
Princen
,
J.
,
Illingworth
,
J.
, and
Kittler
,
J.
,
1990
, “
Comparative Study of Hough Transform Methods for Circle Finding
,”
Image Vis. Comput.
,
8
(
1
), pp.
71
77
.10.1016/0262-8856(90)90059-E
44.
Davies
,
E. R.
,
2005
, “
Machine Vision: Theory, Algorithms, Practicalities
,”
Signal Processing and Its Applications
,
Elsevier Science & Technology
,
Burlington
.
45.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
46.
Vogt
,
H.
,
1989
, “
The Problem of the Departure Diameter of Bubbles at Gas-Evolving Electrodes
,”
Electrochim. Acta
,
34
(
10
), pp.
1429
1432
.10.1016/0013-4686(89)87183-X
47.
Vogt
,
H.
,
2017
, “
The Quantities Affecting the Bubble Coverage of Gas-Evolving Electrodes
,”
Electrochim. Acta
,
235
, pp.
495
499
.10.1016/j.electacta.2017.03.116
You do not currently have access to this content.