Abstract

Due to the increased use of high heat flux electronic equipment, improving the heat transfer capacity and surface temperature uniformity of heat sinks have become a major concern. In this study, a novel confined slot jet impingement heat sink with discontinuous triangular ribs (CSJIHS-TR) in the wall impingement zone is proposed. The upper cover plate is angled to improve the ability of the heat sink to dissipate heat. A Cu-Al2O3/water hybrid nanofluid is chosen as coolant. The main structural parameters of CSJIHS-TR are optimized using multi-objective. The optimized CSJIHS-TR is investigated using the Re and φ of the hybrid nanofluid. The results show that the optimized CSJIHS-TR exhibits an improved heat transfer capacity. The optimized CSJIHS-TR achieves a 27.8% improvement in performance evaluation criterion (PEC) and a 91.0% reduction in temperature standard deviation (Tstd) compared to the confined slot jet impingement flat-plate heat sink (CSJIFPHS). As Re of the jet impingement and φ of the hybrid nanofluid increase, the heat transfer capacity and temperature uniformity of the optimized CSJIHS-TR increase; however, the flow resistance of CSJIHS-TR also increases. In addition, compared with the mononanofluid, the temperature uniformity and the heat transfer capacity of the CSJIHS-TR with hybrid nanofluid are significantly improved.

References

1.
Barrau
,
J.
,
Riera
,
S.
,
Léveillé
,
E.
,
Fréchette
,
L. G.
, and
Rosell
,
J. I.
,
2015
, “
Nozzle to Plate Optimization of the Jet Impingement Inlet of a Tailored-Width Microchannel Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
67
, pp.
81
87
.10.1016/j.expthermflusci.2014.11.012
2.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
,
Delpech
,
B.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based Systems—Advances and Applications
,”
Energy
,
128
, pp.
729
754
.10.1016/j.energy.2017.04.028
3.
Dang
,
M.
,
Ibrahim
,
H.
, and
Sung
,
I. K.
,
2008
, “
Numerically Investigating the Effects of Cross-Links in Scaled Microchannel Heat Sinks
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121103
.10.1115/1.3001093
4.
Naranjani
,
B.
,
Roohi
,
E.
, and
Ebrahimi
,
A.
,
2021
, “
Thermal and Hydraulic Performance Analysis of a Heat Sink With Corrugated Channels and Nanofluids
,”
J. Therm. Anal. Calorim.
,
146
(
6
), pp.
2549
2560
.10.1007/s10973-020-10225-9
5.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
6.
Abo-Zahhad
,
E. M.
,
Ookawara
,
S.
,
Radwan
,
A.
,
El-Shazly
,
A. H.
, and
ElKady
,
M. F.
,
2018
, “
Thermal and Structure Analyses of High Concentrator Solar Cell Under Confined Jet Impingement Cooling
,”
Energy Convers. Manage.
,
176
(
11
), pp.
39
54
.10.1016/j.enconman.2018.09.005
7.
Kim
,
M.
,
Hyun
,
D. K.
,
Eunseop
,
Y.
, and
Kyung
,
C. K.
,
2018
, “
Flow Characteristics of Three-Dimensional Curved Wall Jets on a Cylinder
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041201
.10.1115/1.4038089
8.
Tang
,
Z. G.
,
Wang
,
S. C.
, and
Cheng
,
J. P.
,
2020
, “
Liquid Impingement Flow and Heat Transfer of a Cone Heat Sink With Filet Profiles
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081207
.10.1115/1.4046871
9.
Pawar
,
S.
, and
Patel
,
D. K.
,
2020
, “
The Impingement Heat Transfer Data of Inclined Jet in Cooling Applications: A Review
,”
J. Therm. Sci.
,
29
(
1
), pp.
1
12
.10.1007/s11630-019-1200-y
10.
Izadi
,
A.
,
Majid
,
S.
, and
Xiong
,
Q.
,
2019
, “
Impingement Jet Hydrogen, Air and Cu-H2O Nanofluid Cooling of a Hot Surface Covered by Porous Media With Non-Uniform Input Jet Velocity
,”
Int. J. Hydrogen Energy
,
44
(
30
), pp.
15933
15948
.10.1016/j.ijhydene.2018.12.176
11.
Zhang
,
D.
,
Qu
,
H. C.
,
Lan
,
J. B.
,
Chen
,
J. H.
, and
Xie
,
Y. H.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Protrusioned Surface
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
18
28
.10.1016/j.ijheatmasstransfer.2012.11.019
12.
Barewar
,
S. D.
,
Joshi
,
M.
,
Sharma
,
P. O.
,
Kalos
,
P. S.
,
Bakthavatchalam
,
B.
,
Chougule
,
S. S.
,
Habib
,
K.
, and
Saha
,
S. K.
,
2023
, “
Optimization of Jet Impingement Heat Transfer: A Review on Advanced Techniques and Parameters
,”
Therm. Sci. Eng. Prog.
,
39
, p.
101697
.10.1016/j.tsep.2023.101697
13.
Zhang
,
Z. H.
,
Li
,
Q. H.
,
Bruecker
,
C.
, and
Zhang
,
Q.
,
2022
, “
Enhanced Thermal Performance With High-Amplitude Intermittent Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
185
, p.
122359
.10.1016/j.ijheatmasstransfer.2021.122359
14.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME. J. Turbomach.
, 129(2), pp. 193–201.10.1115/1.2464142
15.
Wiriyasart
,
S.
, and
Naphon
,
P.
,
2020
, “
Heat Spreading of Liquid Jet Impingement Cooling of Cold Plate Heat Sink With Different Fin Shapes
,”
Case Stud. Therm. Eng.
,
20
(
4
), p.
100638
.10.1016/j.csite.2020.100638
16.
Forghan
,
F.
,
Goldthwaite
,
D.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Experimental and Theoretical Investigation of Thermal Performance of Heat Sinks
,”
Proceedings of the Annual Meeting for ISME
, May.
17.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2003
, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
262
267
.10.1109/TCAPT.2003.809540
18.
Chang
,
S. W.
, and
Liou
,
H. H.
,
2009
, “
Heat Transfer of Impinging Jet-Array Onto Concave- and Convex-Dimpled Surfaces With Effusion
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4484
4499
.10.1016/j.ijheatmasstransfer.2009.03.050
19.
Tang
,
Z. G.
,
Liu
,
Q. Q.
,
Li
,
H.
, and
Min
,
X. T.
,
2017
, “
Numerical Simulation of Heat Transfer Characteristics of Jet Impingement With a Novel Single Cone Heat Sink
,”
Appl. Therm. Eng.
,
127
, pp.
906
914
.10.1016/j.applthermaleng.2017.08.099
20.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.10.1016/j.ijheatmasstransfer.2004.08.005
21.
Gau
,
C.
, and
Lee
,
C. C.
,
2000
, “
Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
43
(
24
), pp.
4405
4418
.10.1016/S0017-9310(00)00064-8
22.
Gau
,
C.
, and
Lee
,
C. C.
,
1992
, “
Impingement Cooling Flow Structure and Heat Transfer Along Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3009
3020
.10.1016/0017-9310(92)90320-R
23.
Zhang
,
G. Y.
,
Huang
,
H. K.
,
Sun
,
T. Z.
, and
Zhang
,
Z. F.
,
2022
, “
Flow Structures and Heat Transfer on Small-Scale Concentric Ribs Rough Surface for Confined Turbulent Jet Impingement
,”
Int. Commun. Heat Mass Transfer
,
137
, p.
106218
.10.1016/j.icheatmasstransfer.2022.106218
24.
Jeong
,
J.
,
Li
,
C. G.
,
Kwon
,
Y.
,
Lee
,
J. K.
,
Kim
,
S. H.
, and
Yun
,
R.
,
2013
, “
Particle Shape Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids
,”
Int. J. Refrig.
,
36
(
8
), pp.
2233
2241
.10.1016/j.ijrefrig.2013.07.024
25.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2011
, “
Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
369
377
.10.1016/j.ijthermalsci.2010.04.008
26.
Abhijith
,
M. S.
, and
Venkatasubbaiah
,
K.
,
2020
, “
Numerical Investigation of Jet Impingement Flows With Different Nanofluids in a Mini Channel Using Eulerian-Eulerian Two-Phase Method
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100585
.10.1016/j.tsep.2020.100585
27.
Suresh
,
S.
,
Venkitaraj
,
K. O.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
Effect of Al2O3-Cu/Water Hybrid Nanofluid in Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
54
60
.10.1016/j.expthermflusci.2011.11.007
28.
Azmi
,
W. H.
,
Zainon
,
S. N. M.
,
Hamid
,
K. A.
, and
Mamat
,
R.
,
2019
, “
A Review on Thermo-Physical Properties and Heat Transfer Applications of Single and Hybrid Metal Oxide Nanofluids
,”
J. Mech. Eng. Sci.
,
13
(
2
), pp.
5182
5211
.10.15282/jmes.13.2.2019.28.0425
29.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2020
, “
Energetic and Exergetic Performances of Plate Heat Exchanger Using Brine-Based Hybrid Nanofluid for Milk Chilling Application
,”
Heat Transfer Eng.
,
41
(
6–7
), pp.
522
535
.10.1080/01457632.2018.1546770
30.
Arunachalam
,
U.
, and
Edwin
,
M.
,
2018
, “
Experimental Studies on Laminar Flow Heat Transfer in Nanofluids Flowing Through a Straight Circular Tube With and Without V-Cut Twisted Tape Insert
,”
Heat Mass Transfer
,
54
(
3
), pp.
673
683
.10.1007/s00231-017-2162-9
31.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Nabil
,
M. F.
, and
Mamat
,
R.
,
2018
, “
Experimental Investigation of Nanoparticle Mixture Ratios on TiO2–SiO2 Nanofluids Heat Transfer Performance Under Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
118
, pp.
617
627
.10.1016/j.ijheatmasstransfer.2017.11.036
32.
Singh
,
S. K.
, and
Sarkar
,
J.
,
2018
, “
Energy, Exergy and Economic Assessments of Shell and Tube Condenser Using Hybrid Nanofluid as Coolant
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
41
48
.10.1016/j.icheatmasstransfer.2018.08.005
33.
Ranga Babu
,
J. A.
,
Kumar
,
K. K.
, and
Rao
,
S. S.
,
2017
, “
State-of-Art Review on Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
77
(
3
), pp.
551
565
.10.1016/j.rser.2017.04.040
34.
Hanafi
,
N. S. M.
,
Ghopa
,
W. A. W.
,
Zulkifli
,
R.
,
Abdullah
,
S.
,
Harun
,
Z.
, and
Mansor
,
M. R. A.
,
2022
, “
Numerical Simulation on the Effectiveness of Hybrid Nanofluid in Jet Impingement Cooling Application
,”
Energy Rep.
,
8
(
5
), pp.
764
775
.10.1016/j.egyr.2022.07.096
35.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
36.
Yue
,
Y.
,
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Analysis of Performances of a Manifold Microchannel Heat Sink With Nanofluids
,”
Int. J. Therm. Sci.
,
89
, pp.
305
313
.10.1016/j.ijthermalsci.2014.11.016
37.
Ebrahimi
,
A.
,
Rikhtegar
,
F.
,
Sabaghan
,
A.
, and
Roohi
,
E.
,
2016
, “
Heat Transfer and Entropy Generation in a Microchannel With Longitudinal Vortex Generators Using Nanofluids
,”
Energy
,
101
, pp.
190
201
.10.1016/j.energy.2016.01.102
38.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
39.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
2013
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide
,”
Exp. Heat Transfer
,
1
, pp.
37
41
.10.1080/08916159808946559
40.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
41.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2011
, “
Synthesis of Al2O3-Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties
,”
Colloids Surf., A
,
388
(
1–3
), pp.
41
48
.10.1016/j.colsurfa.2011.08.005
42.
Doormaal
,
J. V.
,
Raithby
,
G.
, and
Kheradmand
,
S.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
43.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
.10.1016/j.applthermaleng.2014.12.006
44.
Li
,
P.
,
Zhang
,
D.
, and
Xie
,
Y. H.
,
2014
, “
Heat Transfer and Flow Analysis of Al2O3-Water Nanofluids in Microchannel With Dimple and Protrusion
,”
Int. J. Heat Mass Transfer
,
73
, pp.
456
467
.10.1016/j.ijheatmasstransfer.2014.02.042
45.
Wu
,
C.
,
Wang
,
Z. P.
,
Bao
,
Y. B.
,
Zhao
,
J. T.
, and
Rao
,
Z. H.
,
2021
, “
Investigation on the Performance Enhancement of Baffled Cold Plate Based Battery Thermal Management System
,”
J. Energy Storage
,
41
(
7
), p.
102882
.10.1016/j.est.2021.102882
46.
Elebiary
,
K.
, and
Taslim
,
M. E.
,
2013
, “
Experimental/Numerical Crossover Jet Impingement in an Airfoil Leading-Edge Cooling Channel
,”
ASME J. Turbomach.
,
135
(
1
), p.
011037
.10.1115/1.4006420
47.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided With Circular Transverse Wire Rib Roughness on the Absorber Plate
,”
Energy
,
55
, pp.
1127
1142
.10.1016/j.energy.2013.03.066
48.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H. D.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.10.1016/j.ijheatmasstransfer.2013.12.006
49.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu-Water Nanofluid
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
426
433
.10.1016/j.applthermaleng.2011.10.059
50.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
51.
Jin
,
R. C.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal
,”
J. Stat. Plann. Inference
,
134
(
1
), pp.
268
287
.10.1016/j.jspi.2004.02.014
52.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
13
(
1
), pp.
1
38
.10.1111/j.2517-6161.1951.tb00067.x
53.
Wen
,
J.
,
Li
,
K.
,
Zhang
,
X.
,
Wang
,
C. L.
,
Wang
,
S.
, and
Tu
,
J. Y.
,
2018
, “
Optimization Investigation on Configuration Parameters of Serrated Fin in Plate-Fin Heat Exchanger Based on Fluid Structure Interaction Analysis
,”
Int. J. Heat Mass Transfer
,
119
, pp.
282
294
.10.1016/j.ijheatmasstransfer.2017.11.058
54.
Sawyers
,
D. R.
,
Sen
,
M.
, and
Chang
,
H. C.
,
1998
, “
Heat Transfer Enhancement in Three-Dimensional Corrugated Channel Flow
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3559
3573
.10.1016/S0017-9310(98)00029-5
55.
Geyer
,
P. E.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2007
, “
Laminar Flow and Heat Transfer in a Periodic Trapezoidal Channel With Semi-Circular Cross-Section
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3471
3480
.10.1016/j.ijheatmasstransfer.2007.01.050
56.
Ebrahimi
,
A.
,
Naranjani
,
B.
,
Milani
,
S.
, and
Javan
,
F. D.
,
2017
, “
Laminar Convective Heat Transfer of Shear-Thinning Liquids in Rectangular Channels With Longitudinal Vortex Generators
,”
Chem. Eng. Sci.
,
173
, pp.
264
274
.10.1016/j.ces.2017.07.044
57.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
58.
Ebrahimi
,
A.
, and
Naranjani
,
B.
,
2016
, “
An Investigation on Thermo-Hydraulic Performance of a Flat-Plate Channel With Pyramidal Protrusions
,”
Appl. Therm. Eng.
,
106
, pp.
316
324
.10.1016/j.applthermaleng.2016.06.015
59.
Wang
,
L.
, and
Sundén
,
B.
,
2007
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Various-Shaped Ribs
,”
Heat Mass Transfer
,
43
(
8
), pp.
759
766
.10.1007/s00231-006-0190-y
60.
Lv
,
J.
,
Chang
,
S.
,
Hu
,
C. Z.
,
Bai
,
M.
,
Wang
,
P.
, and
Zeng
,
K.
,
2017
, “
Experimental Investigation of Free Single Jet Impingement Using Al2O3-Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
88
(
9
), pp.
126
135
.10.1016/j.icheatmasstransfer.2017.08.017
61.
Maïga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
, and
Coqueux
,
M.
,
2006
, “
Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
3
), pp.
275
292
.10.1108/09615530610649717
62.
Mabood
,
F.
,
Yusuf
,
T. A.
, and
Khan
,
W. A.
,
2021
, “
Cu–Al2O3–H2O Hybrid Nanofluid Flow With Melting Heat Transfer, Irreversibility Analysis and Nonlinear Thermal Radiation
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
973
984
.10.1007/s10973-020-09720-w
63.
Khan
,
U.
,
Adnan
,
Ullah
,
B.
,
Wahab
,
H. A.
,
Ullah
,
I.
,
Almuqrin
,
M. A.
, and
Khan
,
I.
,
2022
, “
Comparative Thermal Transport Mechanism in Cu-H2O and Cu-Al2O3/H2O Nanofluids: Numerical Investigation
,”
Waves Random Complex Media
, pp.
1
16
.10.1080/17455030.2021.2023783
64.
Vaziei
,
P.
, and
Abouali
,
O.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer for Al2O3-Water Nanofluid Impinging Jet
,”
ASME
Paper No. ICNMM2009-82250.10.1115/ICNMM2009-82250
65.
Mohaghegh
,
M. R.
,
Tasnim
,
S. H.
,
Aliabadi
,
A. A.
, and
Mahmud
,
S.
,
2022
, “
Jet Impingement Cooling Enhanced With Nano-Encapsulated PCM
,”
Energies
,
15
(
3
), p.
1034
.10.3390/en15031034
You do not currently have access to this content.