Abstract

Fluidic oscillators are no-moving-part actuators that can be used to produce pulsating jets. The characteristics of these devices and of the flow fields they produce are of particular interest in the field of heat transfer, as pulsating impinging jets have been shown to improve heat transfer compared to steady jets. In this study, special focus is given to these characteristics as a preparation for a subsequent thermal study that will evaluate the performance of these pulsed jets against steady jets. The functioning of the device in response to different operating and design parameters is first considered. It was shown that a transition between different operating modes is possible, depending on both the inlet mass flowrate and the width of the feedback channel of the device. This was followed by a study of the velocity fields of the pulsed jets produced by the device. More specifically, attention is given to the developing characteristics and flow structures of the pulsating free jets of air which are then compared to equivalent steady jets. Finally, by taking advantage of the periodic aspect of the flow, the phase-averaged velocity field was reconstructed. Vortex dipoles were detected, tracked and their convection velocity computed from the same data and compared to a theoretical value from the literature. A proper orthogonal decomposition (POD) of the synchronized raw data was then performed to further highlight the presence of these vortex structures and other flow instabilities.

References

1.
Tang
,
C.
,
Zhang
,
J. Z.
,
Lyu
,
Y. W.
, and
Tan
,
X. M.
,
2020
, “
Convective Heat Transfer on a Flat Target Surface Impinged by Pulsating Jet With an Additional Transmission Chamber
,”
Heat Mass Transfer Stoffuebertrag.
,
56
(
1
), pp.
183
205
.10.1007/s00231-019-02702-1
2.
Rakhsha
,
S.
,
Rajabi Zargarabadi
,
M.
, and
Saedodin
,
S.
,
2020
, “
Experimental and Numerical Study of Flow and Heat Transfer From a Pulsed Jet Impinging on a Pinned Surface
,”
Exp. Heat Transfer
,
34
(
4
), pp.
376
391
.10.1080/08916152.2020.1755388
3.
Zhou
,
J. W.
,
Wang
,
Y. G.
,
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Unsteady Jet Impingement: Heat Transfer on Smooth and Non-Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
103
110
.10.1016/j.icheatmasstransfer.2008.10.020
4.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
2015
, “
Vortex Rings and Jets
,”
Fluid Mechanics and Its Applications
, Vol.
111
,
Springer
,
Singapore
.
5.
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Convective Heat Transfer Under Unsteady Impinging Jets: The Effect of the Shape of the Unsteadiness
,”
Heat Mass Transfer Stoffuebertrag.
,
45
(
12
), pp.
1519
1532
.10.1007/s00231-009-0527-4
6.
Hsu
,
C. M.
,
Jhan
,
W. C.
, and
Chang
,
Y. Y.
,
2019
, “
Flow and Heat Transfer Characteristics of a Pulsed Jet Impinging on a Flat Plate
,”
Heat Mass Transfer Stoffuebertrag.
,
56
, pp.
143
160
.10.1007/s00231-019-02696-w
7.
Haneda
,
Y.
,
Tsuchiya
,
Y.
,
Nakabe
,
K.
, and
Suzuki
,
K.
,
1998
, “
Enhancement of Impinging Jet Heat Transfer by Making Use of Mechano-Fluid Interactive Flow Oscillation
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
115
124
.10.1016/S0142-727X(97)10016-9
8.
Wang
,
S.
,
Baldas
,
L.
,
Colin
,
S.
,
Orieux
,
S.
,
Kourta
,
A.
, and
Mazellier
,
N.
,
2016
, “
Experimental and Numerical Study of the Frequency Response of a Fluidic Oscillator for Active Flow Control
,”
AIAA
Paper No.
2016
4234
.10.2514/6.2016-4234
9.
Nicholls
,
C. J.
,
Tang
,
B. M. T.
,
Turner
,
J.
, and
Bacic
,
M.
,
2022
, “
Novel Operating Mode of a Fluidic Oscillator
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071501
.10.1115/1.4053554
10.
Wen
,
X.
,
Liu
,
J.
,
Li
,
Z.
,
Peng
,
D.
,
Zhou
,
W.
,
Kim
,
K. C.
, and
Liu
,
Y.
,
2020
, “
Jet Impingement Using an Adjustable Spreading-Angle Sweeping Jet
,”
Aerosp. Sci. Technol.
,
105
, p.
105956
.10.1016/j.ast.2020.105956
11.
Kim
,
D. J.
,
Jeong
,
S.
,
Park
,
T.
, and
Kim
,
D.
,
2019
, “
Impinging Sweeping Jet and Convective Heat Transfer on Curved Surfaces
,”
Int. J. Heat Fluid Flow
,
79
, p.
108458
.10.1016/j.ijheatfluidflow.2019.108458
12.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
13.
Ten
,
J. S.
, and
Povey
,
T.
,
2019
, “
Self-Excited Fluidic Oscillators for Gas Turbines Cooling Enhancement: Experimental and Computational Study
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
536
547
.10.2514/1.T5261
14.
Tesař
,
V.
,
2017
, “
Taxonomic Trees of Fluidic Oscillators
,”
EPJ Web Conf.
,
143
, p.
02128
.10.1051/epjconf/201714302128
15.
Aram
,
S.
,
Lee
,
Y.-T.
,
Shan
,
H.
, and
Vargas
,
A.
,
2018
, “
Computational Fluid Dynamic Analysis of Fluidic Actuator for Active Flow Control Applications
,”
AIAA J.
,
56
(
1
), pp.
111
120
.10.2514/1.J056255
16.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Phase-Averaging Methods for the Natural Flowfield of a Fluidic Oscillator
,”
AIAA J.
,
53
(
8
), pp.
2359
2368
.10.2514/1.J053717
17.
Warren
,
R. W.
,
1964
, “
Negative Feedback Oscillator
,” U.S. Patent Office US3158166A.
18.
Löffler
,
S.
,
Ebert
,
C.
, and
Weiss
,
J.
,
2021
, “
Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control
,”
Fluids
,
6
(
4
), p.
166
.10.3390/fluids6040166
19.
Claus
,
G. C.
,
Hatton
,
A.
,
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2020
, “
Internal Geometry and External Wall Effects on Fluidic Oscillator Behavior
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111212
.10.1115/1.4047849
20.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
,
2008
, “
The Influence of Reynolds Number on a Plane Jet
,”
Phys. Fluids
,
20
(
7
), p.
075108
.10.1063/1.2959171
21.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT Press
,
Cambridge, MA
.
22.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier
,
New York
.
23.
Lee
,
J. H-W.
, and
Chu
,
V.
,
2003
,
Turbulent Jets and Plumes: A Lagrangian Approach
,
Springer Science & Business Media
,
Berlin, Germany
.
24.
Kotsovinos
,
N. E.
,
1976
, “
A Note on the Spreading Rate and Virtual Origin of a Plane Turbulent Jet
,”
J. Fluid Mech.
,
77
(
2
), pp.
305
311
.10.1017/S0022112076002127
25.
Bradshaw
,
P.
,
1977
, “
Effect of External Disturbances on the Spreading Rate of a Plane Turbulent Jet
,”
J. Fluid Mech.
,
80
(
4
), pp.
795
797
.10.1017/S0022112077002493
26.
Ribeiro
,
M. M.
, and
Whitelaw
,
J. H.
,
1980
, “
The Structure of Turbulent Jets
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
,
370
(
1742
), pp.
281
301
.10.1098/rspa.1980.0034
27.
Béra
,
J. C.
,
Michard
,
M.
,
Grosjean
,
N.
, and
Comte-Bellot
,
G.
,
2001
, “
Flow Analysis of Two-Dimensional Pulsed Jets by Particle Image Velocimetry
,”
Exp. Fluids
,
31
(
5
), pp.
519
532
.10.1007/s003480100314
28.
Wang
,
S.
,
Batikh
,
A.
,
Baldas
,
L.
,
Kourta
,
A.
,
Mazellier
,
N.
,
Colin
,
S.
, and
Orieux
,
S.
,
2019
, “
On the Modelling of the Switching Mechanisms of a Coanda Fluidic Oscillator
,”
Sens. Actuators, A Phys.
,
299
, p.
111618
.10.1016/j.sna.2019.111618
29.
Muller
,
H. R.
,
1964
, “
A Study of the Dynamic Features of a Wall-Reattachment Fluid Amplifier
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
819
826
.10.1115/1.3655962
30.
Epstein
,
M.
,
1971
, “
Theoretical Investigation of the Switching Mechanism in a Bistable Wall Attachment Fluid Amplifier
,”
ASME J. Basic Eng.
,
93
(
1
), pp.
55
62
.10.1115/1.3425182
31.
Kallinger
,
T.
,
Reegen
,
P.
, and
Weiss
,
W. W.
,
2008
, “
A Heuristic Derivation of the Uncertainty for Frequency Determination in Time Series Data
,”
Astron. Astrophys.
,
481
(
2
), pp.
571
574
.10.1051/0004-6361:20077559
33.
Husain
,
H. S.
, and
Hussain
,
F.
,
1995
, “
Experiments on Subharmonic Resonance in a Shear Layer
,”
J. Fluid Mech.
,
304
, pp.
343
372
.10.1017/S0022112095004459
34.
Lumley
,
J. L.
,
2007
,
Stochastic Tools in Turbulence
, Dover Book ed.,
Dover Publications
,
Mineola, New York
.
35.
Yadav
,
H.
,
Srivastava
,
A.
, and
Agrawal
,
A.
,
2016
, “
Characterization of Pulsating Submerged Jet-A Particle Image Velocimetry Study
,”
J. Therm. Sci. Eng. Appl.
,
8
(
1
), pp.
1
9
.10.1115/1.4030813
36.
Yadav
,
H.
,
Agrawal
,
A.
, and
Srivastava
,
A.
,
2016
, “
Mixing and Entrainment Characteristics of a Pulse Jet
,”
Int. J. Heat Fluid Flow
,
61
, pp.
749
761
.10.1016/j.ijheatfluidflow.2016.08.006
37.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Tage
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer
,
45
(
2
), pp.
193
206
.10.1007/s00231-008-0410-8
38.
Goldschmidt
,
V. W.
, and
Bradshaw
,
P.
,
1973
, “
Flapping of a Plane Jet
,”
Phys. Fluids
,
16
(
3
), pp.
354
355
.10.1063/1.1694348
39.
Shariff
,
K.
, and
Leonard
,
A.
,
1992
, “
Vortex Rings
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
235
279
.10.1146/annurev.fl.24.010192.001315
40.
Steinfurth
,
B.
, and
Weiss
,
J.
,
2020
, “
Vortex Rings Produced by Non-Parallel Planar Starting Jets
,”
J. Fluid Mech.
,
903
, p.
A16
.10.1017/jfm.2020.637
41.
Afanasyev
,
Y. D.
,
2006
, “
Formation of Vortex Dipoles
,”
Phys. Fluids
,
18
(
3
), p.
037103
.10.1063/1.2182006
42.
Weiss
,
J.
,
2019
, “
A Tutorial on the Proper Orthogonal Decomposition
,”
AIAA
Paper No.
2019
3333
.10.2514/6.2019-3333
43.
Huerta
,
O.
,
Hernandez
,
D. M.
, and
Choutapalli
,
I. M.
,
2014
, “
Proper Orthogonal Decomposition of a Turbulent Pulsed Jet
,”
AIAA
Paper No.
2014
3249
.10.2514/6.2014-3249
44.
Rockwell
,
D. O.
, and
Niccolls
,
W. O.
,
1972
, “
Natural Breakdown of Planar Jets
,”
ASME J. Basic Eng.
,
94
(
4
), pp.
720
728
.10.1115/1.3425533
45.
Sakakibara
,
J.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1997
, “
Vortex Structure and Heat Transfer in the Stagnation Region of an Impinging Plane Jet (Simultaneous Measurements of Velocity and Temperature Fields by Digital Particle Image Velocimetry and Laser-Induced Fluorescence)
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3163
3176
.10.1016/S0017-9310(96)00367-5
46.
Jeffers
,
N.
,
Stafford
,
J.
,
Conway
,
C.
,
Punch
,
J.
, and
Walsh
,
E.
,
2016
, “
The Influence of the Stagnation Zone on the Fluid Dynamics at the Nozzle Exit of a Confined and Submerged Impinging Jet
,”
Exp. Fluids
,
57
(
2
), pp.
1
15
.10.1007/s00348-015-2092-6
47.
Maurel
,
S.
, and
Solliec
,
C.
,
2001
, “
A Turbulent Plane Jet Impinging Nearby and Far From a Flat Plate
,”
Exp. Fluids
,
31
(
6
), pp.
687
696
.10.1007/s003480100327
You do not currently have access to this content.