Abstract

A properly validated computational fluid dynamics methodology is a valuable predictive tool capable of aiding in the development of new methods for treating cardiovascular disease (CVD). Although blood is a shear-thinning non-Newtonian fluid, a key assumption that remains highly contested is whether non-Newtonian blood can be approximated as a Newtonian fluid. Previously, a preliminary link was established between the effects of non-Newtonian viscosity and the Womersley number, α, which could lend an explanation to the varied conclusions from previous comparison studies. Building upon this foundation, computational fluid dynamics was utilized to perform an in-depth investigation into the link between blood rheology and α for multiple geometries. For the first time in the open literature, the present research sheds definitive light on the source of the diverse results from previous studies. It demonstrates how α can affect the severity of non-Newtonian effects when compared to Newtonian viscosity, while otherwise maintaining the same boundary conditions. These results show that an increase in α reduces the peak global importance factor, a measure of the difference between Newtonian and non-Newtonian models, by upwards of 90%. Additionally, this results in a decrease in the relative difference for disturbed flow factors, parameters linked to the initiation and progression of CVD, from upwards of 34% down to approximately 5%. This study proves that there is a significant relationship between α and blood rheology, with higher α shifting the apparent viscosity of non-Newtonian models further toward the constant Newtonian viscosity.

References

1.
Dunbar
,
S. B.
,
Khavjou
,
O. A.
,
Bakas
,
T.
,
Hunt
,
G.
,
Kirch
,
R. A.
,
Leib
,
A. R.
,
Morrison
,
R. S.
,
Poehler
,
D. C.
,
Roger
,
V. L.
, and
Whitsel
,
L. P.
,
2018
, “
Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement From the American Heart Association
,”
Circulation
,
137
(
19
), pp. e558-e577.10.1161/CIR.0000000000000570
2.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
3.
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2008
, “
Blood Flow in End-to-Side Anastomoses
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
367
393
.10.1146/annurev.fluid.40.111406.102119
4.
Ha
,
H.
,
Hwang
,
D.
,
Choi
,
W.-R.
,
Baek
,
J.
, and
Lee
,
S. J.
,
2014
, “
Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow
,”
PLoS One
,
9
(
10
), p.
e111047
.10.1371/journal.pone.0111047
5.
Nisco
,
G. D.
,
Gallo
,
D.
,
Siciliano
,
K.
,
Tasso
,
P.
,
Lodi Rizzini
,
M.
,
Mazzi
,
V.
,
Calò
,
K.
,
Antonucci
,
M.
, and
Morbiducci
,
U.
,
2020
, “
Hemodialysis Arterio-Venous Graft Design Reducing the Hemodynamic Risk of Vascular Access Dysfunction
,”
J. Biomech.
,
100
, p.
109591
.10.1016/j.jbiomech.2019.109591
6.
Ruiz-Soler
,
A.
,
Kabinejadian
,
F.
,
Slevin
,
M. A.
,
Bartolo
,
P. J.
, and
Keshmiri
,
A.
,
2017
, “
Optimisation of a Novel Spiral-Inducing Bypass Graft Using Computational Fluid Dynamics
,”
Sci. Rep.
,
7
(
1
), p.
1865
.10.1038/s41598-017-01930-x
7.
Lee
,
S. W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
278
.10.1115/1.2540836
8.
Morbiducci
,
U.
,
Gallo
,
D.
,
Massai
,
D.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Antiga
,
L.
,
Redaelli
,
A.
, and
Montevecchi
,
F. M.
,
2011
, “
On the Importance of Blood Rheology for Bulk Flow in Hemodynamic Models of the Carotid Bifurcation
,”
J. Biomech.
,
44
(
13
), pp.
2427
2438
.10.1016/j.jbiomech.2011.06.028
9.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2006
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
,
39
(
6
), pp.
1116
1128
.10.1016/j.jbiomech.2005.01.034
10.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
464
475
.10.1115/1.2895428
11.
Chen
,
J.
,
Lu
,
X. Y.
, and
Wang
,
W.
,
2006
, “
Non-Newtonian Effects of Blood Flow on Hemodynamics in Distal Vascular Graft Anastomoses
,”
J. Biomech.
,
39
(
11
), pp.
1983
1995
.10.1016/j.jbiomech.2005.06.012
12.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.10.1016/S0021-9290(99)00015-9
13.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 °Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
14.
Vimmr
,
J.
, and
Jonášová
,
A.
,
2010
, “
Non-Newtonian Effects of Blood Flow in Complete Coronary and Femoral Bypasses
,”
Math. Comput. Simul.
,
80
(
6
), pp.
1324
1336
.10.1016/j.matcom.2009.01.004
15.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
16.
Rodkiewicz
,
C. M.
,
Sinha
,
P.
, and
Kennedy
,
J. S.
,
1990
, “
On the Application of a Constitutive Equation for Whole Human Blood
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
198
206
.10.1115/1.2891172
17.
Fung
,
Y. C.
,
1996
,
Biomechanics: Circulation
,
Springer
,
New York
.
18.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.10.1006/jtbi.1997.0564
19.
Banerjee
,
M. K.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2012
, “
Effect of Pulsatile Flow Waveform and Womersley Number on the Flow in Stenosed Arterial Geometry
,”
ISRN Biomath.
,
2012
, pp.
1
17
.10.5402/2012/853056
20.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
,
1994
, “
Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis
,”
Biorheology
,
31
(
5
), pp.
565
586
.10.3233/BIR-1994-31505
21.
Rohlf
,
K.
, and
Tenti
,
G.
,
2001
, “
The Role of the Womersley Number in Pulsatile Blood Flow a Theoretical Study of the Casson Model
,”
J. Biomech.
,
34
(
1
), pp.
141
148
.10.1016/S0021-9290(00)00103-2
22.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
23.
Loth
,
F.
,
1993
,
Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions
,
Georgia Institute of Technology
, Atlanta, GA.
24.
Geary
,
R. L.
,
Kohler
,
T. R.
,
Vergel
,
S.
,
Kirkman
,
T. R.
, and
Clowes
,
A. W.
,
1994
, “
Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts
,”
Circ. Res.
,
74
(
1
), pp.
14
23
.10.1161/01.RES.74.1.14
25.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
26.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
27.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
28.
Kleinstreuer
,
C.
,
Hyun
,
S.
,
Buchanan
,
J. R.
,
Longest
,
P. W.
,
Archie
,
J. P.
, Jr.
, and
Truskey
,
G. A.
,
2001
, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev.™ Biomed. Eng.
,
29
(
1
), pp.
1
64
.10.1615/CritRevBiomedEng.v29.i1.10
29.
Mohamied
,
Y.
,
Rowland
,
E. M.
,
Bailey
,
E. L.
,
Sherwin
,
S. J.
,
Schwartz
,
M. A.
, and
Weinberg
,
P. D.
,
2015
, “
Change of Direction in the Biomechanics of Atherosclerosis
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
16
25
.10.1007/s10439-014-1095-4
30.
Cookson
,
A. N.
,
Doorly
,
D. J.
, and
Sherwin
,
S. J.
,
2009
, “
Mixing Through Stirring of Steady Flow in Small Amplitude Helical Tubes
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
710
721
.10.1007/s10439-009-9636-y
31.
Loth
,
F.
,
Jones
,
S. A.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Nassar
,
R. F.
,
Glagov
,
S.
, and
Bassiouny
,
H. S.
,
2002
, “
Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
44
51
.10.1115/1.1428554
32.
Razavi
,
A.
,
Shirani
,
E.
, and
Sadeghi
,
M. R.
,
2011
, “
Numerical Simulation of Blood Pulsatile Flow in a Stenosed Carotid Artery Using Different Rheological Models
,”
J. Biomech.
,
44
(
11
), pp.
2021
2030
.10.1016/j.jbiomech.2011.04.023
You do not currently have access to this content.