Abstract

The objective of this work is to develop and validate a computational fluid dynamics (CFD) model of a supersonic air ejector, a device largely used in aircraft, and to determine how its efficiency behaves when some of its geometric parameters vary, fully exploring the physical phenomena of the problem. It is important to highlight that in the aeronautical industry the competitiveness of any device intrinsically relies on its efficiency, such that a CFD model for an ejector is indispensable for proper design. This paper presents a study of several turbulence models Rk–ε en, Rk–ε std, k–ω shear stress transport (SST), Spalart–Allmaras (SA), and generalized k–ω (GEKO). A validation process was conducted by comparing CFD results with two supersonic air ejector experiments. The turbulence model was also validated with these experiments, and it was concluded that the k–ω GEKO model is able to reproduce the physics of the supersonic air ejector problem with greater fidelity than traditional turbulence models in terms of entrainment ratio, with a 6% relative error reduction in relation to the traditional k–ω SST model, which has been considered by multiple authors as the best Reynolds-averaged Navier–Stokes (RANS) approach in ejector's CFD studies. After this validation process, the sensitivity of ejector efficiency to two geometric parameters was evaluated: the nozzle exit position and the ejector mixing chamber height.

References

1.
Besagni
,
G.
,
Mereu
,
R.
, and
Colombo
,
E.
,
2014
, “
CFD Study of Ejector Efficiencies
,”
ASME
Paper No. 10.1115/ESDA2014-20053
2.
Menter
,
F.
,
Lechner
,
R.
, and
Matyushenko
,
A.
,
2019
, “
Best Practice: Generalized k-w Two-Equation Turbulence Model in ANSYS CFD (GEKO)
,”
ANSYS
, Canonsburg, PA, pp.
1
38
.
3.
Little
,
A. B.
,
Bartosiewicz
,
Y.
, and
Garimella
,
S.
,
2015
, “
Visualization and Validation of Ejector Flow Field With Computational and First-Principles Analysis
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051107
.10.1115/1.4029534
4.
Rusly
,
E.
,
Aye
,
L.
,
Charters
,
W. W.
, and
Ooi
,
A.
,
2005
, “
CFD Analysis of Ejector in a Combined Ejector Cooling System
,”
Int. J. Refrig.
,
28
(
7
), pp.
1092
1101
.10.1016/j.ijrefrig.2005.02.005
5.
Varga
,
S.
,
Oliveira
,
A. C.
, and
Diaconu
,
B.
,
2009
, “
Numerical Assessment of Steam Ejector Efficiencies Using CFD
,”
Int. J. Refrig.
,
32
(
6
), pp.
1203
1211
.10.1016/j.ijrefrig.2009.01.007
6.
Bartosiewicz
,
Y.
,
Aidoun
,
Z.
,
Desevaux
,
P.
, and
Mercadier
,
Y.
,
2005
, “
Numerical and Experimental Investigations on Supersonic Ejectors
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
56
70
.10.1016/j.ijheatfluidflow.2004.07.003
7.
Mazzelli
,
F.
,
Giacomelli
,
F.
, and
Milazzo
,
A.
,
2018
, “
CFD Modeling of Condensing Steam Ejectors: Comparison With an Experimental Test-Case
,”
Int. J. Therm. Sci.
,
127
, pp.
7
18
.10.1016/j.ijthermalsci.2018.01.012
8.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,” Numerical Prediction of Flow,
Heat Transfer, Turbulence and Combustion
, Vol.
3
, North Holland Publishing Co., Amsterdam, The Netherlands, pp.
96
116
.
9.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
10.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
11.
Spalart
,
P. R.
,
Allmaras
,
S. R.
, and
Reno
,
J.
,
1992
, “
One-Equatlon Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Science Meeting Exhibit
, Reno, NV, Jan. 6–9, p.
23
.10.2514/6.1992-439
12.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
13.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
14.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
15.
Sriveerakul
,
T.
,
Aphornratana
,
S.
, and
Chunnanond
,
K.
,
2007
, “
Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
812
822
.10.1016/j.ijthermalsci.2006.10.014
16.
Besagni
,
G.
, and
Inzoli
,
F.
,
2017
, “
Computational Fluid-Dynamics Modeling of Supersonic Ejectors: Screening of Turbulence Modeling Approaches
,”
Appl. Therm. Eng.
,
117
, pp.
122
144
.10.1016/j.applthermaleng.2017.02.011
17.
García Del Valle
,
J.
,
Sierra-Pallares
,
J.
,
Carrascal
,
P.
, and
Ruiz
,
F.
,
2015
, “
An Experimental and Computational Study of the Flow Pattern in a Refrigerant Ejector. Validation of Turbulence Models and Real-Gas Effects
,”
Appl. Therm. Eng.
,
89
, pp.
795
811
.10.1016/j.applthermaleng.2015.06.064
18.
Pianthong
,
K.
,
Seehanam
,
W.
,
Behnia
,
M.
,
Sriveerakul
,
T.
, and
Aphornratana
,
S.
,
2007
, “
Investigation and Improvement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique
,”
Energy Convers. Manage.
,
48
(
9
), pp.
2556
2564
.10.1016/j.enconman.2007.03.021
19.
Mazzelli
,
F.
,
Little
,
A. B.
,
Garimella
,
S.
, and
Bartosiewicz
,
Y.
,
2015
, “
Computational and Experimental Analysis of Supersonic Air Ejector: Turbulence Modeling and Assessment of 3D Effects
,”
Int. J. Heat Fluid Flow
,
56
, pp.
305
316
.10.1016/j.ijheatfluidflow.2015.08.003
20.
Grazzini
,
G.
,
Milazzo
,
A.
, and
Mazzelli
,
F.
,
2018
,
Ejectors for Efficient Refrigeration: Design, Applications and Computational Fluid Dynamics
,
Springer
,
Florence, Italy
.
21.
Miettinen
,
A.
, and
Siikonen
,
T.
,
2015
, “
Application of Pressure- and Density-Based Methods for Different Flow Speeds
,”
Int. J. Numer. Methods Fluids
,
79
(
5
), pp.
243
267
.10.1002/fld.4051
22.
Mazzelli
,
F.
, and
Milazzo
,
A.
,
2015
, “
Performance Analysis of a Supersonic Ejector Cycle Working With R245fa
,”
Int. J. Refrig.
,
49
, pp.
79
92
.10.1016/j.ijrefrig.2014.09.020
23.
Milazzo
,
A.
, and
Mazzelli
,
F.
,
2017
, “
Future Perspectives in Ejector Refrigeration
,”
Appl. Therm. Eng.
,
121
, pp.
344
350
.10.1016/j.applthermaleng.2017.04.088
24.
Besagni
,
G.
,
Cristiani
,
N.
,
Croci
,
L.
,
Guédon
,
G. R.
, and
Inzoli
,
F.
,
2021
, “
Computational Fluid-Dynamics Modelling of Supersonic Ejectors: Screening of Modelling Approaches, Comprehensive Validation and Assessment of Ejector Component Efficiencies
,”
Appl. Therm. Eng.
,
186
, p.
116431
.10.1016/j.applthermaleng.2020.116431
25.
Kracik
,
J.
, and
Dvorak
,
V.
,
2022
, “
Secondary Flow Choking in Axisymmetric Supersonic Air Ejector With Adjustable Motive Nozzle
,”
Appl. Therm. Eng.
,
204
, p.
117936
.10.1016/j.applthermaleng.2021.117936
26.
Gupta
,
P.
,
Rao
,
S. M. V.
, and
Kumar
,
P.
,
2019
, “
Experimental Investigations on Mixing Characteristics in the Critical Regime of a Low-Area Ratio Supersonic Ejector
,”
Phys. Fluids
,
31
(
2
), p.
026101
.10.1063/1.5078433
27.
Hickman
,
K. E.
,
Hill
,
P. G.
, and
Gilbert
,
G. B.
,
1972
,
Analysis and Testing of High Entrainment Single-Nozzle Jet Pumps With Variable-Area Mixing Tubes
,
NASA
,
Washington, DC
.
28.
ANSYS
,
2016
,
ANSYS ICEM CFD Help Manual
, Vol.
1
,
ANSYS
,
Southpointe
.
29.
ANSYS
,
2014
,
Introduction to ANSYS Fluent, Lecture 7: Turbulence Modeling
,
ANSYS
, Canonsburg, PA.
You do not currently have access to this content.