Abstract

We outline a comprehensive computational physics-based investigation of droplet generation characteristics within a double inlet microfluidic T-junction with a semicylindrical obstacle. The interaction of continuous and dispersed fluids triggered by obstacle radius, obstacle position, and the capillary number on the droplet generation is explored in detail. Finite element-based level-set formalism is adopted to track the interface of the two phases in a transient 3D framework. Emphasis has been put to identify the suitable geometrical orientation of the microfluidic confinement for yielding fine spherical droplets with a faster generation rate. The interactions between the pressure forces developed across the obstacle and the amount of continuous fluid striking the dispersed fluid govern the pinch-off phenomenon to yield droplets. The study reveals that the confinement with a larger obstacle radius is susceptible to form fine spherical droplets with a faster generation rate and the production is significantly influenced by the obstacle position. For higher capillary numbers, the dispersed phase goes through extensive elongation before the rupture.

References

1.
Breisig
,
H.
,
Hoppe
,
J.
,
Melin
,
T.
, and
Wessling
,
M.
,
2014
, “
On the Droplet Formation in Hollow-Fiber Emulsification
,”
J. Membr. Sci.
,
467
, pp.
109
115
.10.1016/j.memsci.2014.05.022
2.
Hashem
,
M. A.
,
Aghilinejad
,
A.
,
Chen
,
X.
, and
Tan
,
H.
,
2020
, “
Compound Droplet Modeling for Circulating Tumor Cell Microfiltration With Adaptive Meshing Refinement
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111403
.10.1115/1.4048134
3.
Kudtarkar
,
K.
,
Iglesias
,
P.
,
Smith
,
T. W.
, and
Schertzer
,
M. J.
,
2019
, “
Effect of Metallization on the Electromechanical Properties of Microfluidically Synthesized Hydrogel Beads
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031303
.10.1115/1.4041456
4.
Law
,
D.
, and
Battaglia
,
F.
,
2013
, “
Numerical Simulations for Hydrodynamics of Air-Water External Loop Airlift Reactor Flows With Bubble Break-Up and Coalescence Effects
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081302
.10.1115/1.4024396
5.
Das
,
S.
,
Mandal
,
S.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2017
, “
Effect of Interfacial Slip on the Deformation of a Viscoelastic Drop in Uniaxial Extensional Flow Field
,”
Phys. Fluids
,
29
(
3
), p.
032105
.10.1063/1.4977949
6.
Poddar
,
A.
,
Mandal
,
S.
,
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2018
, “
Sedimentation of a Surfactant-Laden Drop Under the Influence of an Electric Field
,”
J. Fluid Mech.
,
849
, pp.
277
311
.10.1017/jfm.2018.415
7.
Gupta
,
A.
, and
Kumar
,
R.
,
2010
, “
Effect of Geometry on Droplet Formation in the Squeezing Regime in a Microfluidic T-Junction
,”
Microfluid. Nanofluid.
,
8
(
6
), pp.
799
812
.10.1007/s10404-009-0513-7
8.
Bhattacharjee
,
B.
,
2012
, “Study of Droplet Splitting in an Electrowetting Based Digital Microfluidic System,” Ph.D. thesis,
University British Colombia
, Canada.
9.
Deka
,
D. K.
,
Boruah
,
M. P.
,
Pati
,
S.
,
Randive
,
P. R.
, and
Mukherjee
,
P. P.
,
2020
, “
Tuning the Splitting Behavior of Droplet in a Bifurcating Channel Through Wettability–Capillarity Interaction
,”
Langmuir
,
36
(
35
), pp.
10471
10489
.10.1021/acs.langmuir.0c01633
10.
Iqbal
,
S.
,
Bashir
,
S.
,
Ahsan
,
M.
,
Bashir
,
M.
, and
Shoukat
,
S.
,
2020
, “
Effect of Intersection Angle and Wettability on Droplet Generation in Microfluidic Flow-Focusing Device
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041404
.10.1115/1.4045366
11.
Malloggi
,
F.
,
Vanapalli
,
S.
,
Gu
,
H.
,
van den Ende
,
D.
, and
Mugele
,
F.
,
2007
, “
Electrowetting-Controlled Droplet Generation in a Microfluidic Flow-Focusing Device
,”
J. Phys. Condens. Matter
,
19
(
46
), p.
462101
.10.1088/0953-8984/19/46/462101
12.
Ngo
,
I.
,
Woo Joo
,
S.
, and
Byon
,
C.
,
2016
, “
Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-Junction
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051202
.10.1115/1.4031881
13.
Qin
,
N.
,
Wen
,
J. Z.
, and
Ren
,
C. L.
,
2018
, “
Hydrodynamic Shrinkage of Liquid CO2 Taylor Drops in a Straight Microchannel
,”
J. Phys. Condens. Matter
,
30
(
9
), p.
094002
.10.1088/1361-648X/aaa81c
14.
Thorsen
,
T.
,
Roberts
,
R. W.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
,
2001
, “
Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device
,”
Phys. Rev. Lett.
,
86
(
18
), pp.
4163
4166
.10.1103/PhysRevLett.86.4163
15.
Carroll
,
B.
, and
Hidrovo
,
C.
,
2013
, “
Droplet Detachment Mechanism in a High-Speed Gaseous Microflow
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071206
.10.1115/1.4024057
16.
Mahdi
,
Y.
,
Daoud
,
K.
, and
Tadrist
,
L.
,
2017
, “
Two-Phase Flow Patterns and Size Distribution of Droplets in a Microfluidic T-Junction: Experimental Observations in the Squeezing Regime
,”
C. R. Méc.
,
345
(
4
), pp.
259
270
.10.1016/j.crme.2017.02.001
17.
Leshansky
,
A. M.
, and
Pismen
,
L. M.
,
2009
, “
Breakup of Drops in a Microfluidic T Junction
,”
Phys. Fluids
,
21
(
2
), p.
023303
.10.1063/1.3078515
18.
Jullien
,
M. C.
,
Tsang Mui Ching
,
M. J.
,
Cohen
,
C.
,
Menetrier
,
L.
, and
Tabeling
,
P.
,
2009
, “
Droplet Breakup in Microfluidic T-Junctions at Small Capillary Numbers
,”
Phys. Fluids
,
21
(
7
), p.
072001
.10.1063/1.3170983
19.
Bedram
,
A.
,
Darabi
,
A. E.
,
Moosavi
,
A.
, and
Hannani
,
S. K.
,
2014
, “
Numerical Investigation of an Efficient Method (T-Junction With Valve) for Producing Unequal-Sized Droplets in Micro- and Nano-Fluidic Systems
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031202
.10.1115/1.4028499
20.
Chen
,
N.
,
Wu
,
J.
,
Jiang
,
H.
, and
Dong
,
L.
,
2012
, “
CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction
,”
J. Dispers. Sci. Technol.
,
33
(
11
), pp.
1635
1641
.10.1080/01932691.2011.623541
21.
Li
,
X. B.
,
Li
,
F. C.
,
Yang
,
J. C.
,
Kinoshita
,
H.
,
Oishi
,
M.
, and
Oshima
,
M.
,
2012
, “
Study on the Mechanism of Droplet Formation in T-Junction Microchannel
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
340
351
.10.1016/j.ces.2011.10.048
22.
Fallah
,
K.
, and
Rahni
,
M. T.
,
2017
, “
Lattice Boltzmann Simulation of Drop Formation in T-Junction Microchannel
,”
J. Mol. Liq.
,
240
, pp.
723
732
.10.1016/j.molliq.2017.05.108
23.
Bashir
,
S.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2011
, “
Simulations of Microfluidic Droplet Formation Using the Two-Phase Level Set Method
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4733
4741
.10.1016/j.ces.2011.06.034
24.
Nekouei
,
M.
, and
Vanapalli
,
S. A.
,
2017
, “
Volume-of-Fluid Simulations in Microfluidic T-Junction Devices: Influence of Viscosity Ratio on Droplet Size
,”
Phys. Fluids
,
29
(
3
), p.
032007
.10.1063/1.4978801
25.
De Menech
,
M.
,
Garstecki
,
P.
,
Jousse
,
F.
, and
Stone
,
H. A.
,
2008
, “
Transition From Squeezing to Dripping in a Microfluidic T-Shaped Junction
,”
J. Fluid Mech.
,
595
, pp.
141
161
.10.1017/S002211200700910X
26.
Boruah
,
M. P.
,
Sarker
,
A.
,
Randive
,
P. R.
,
Pati
,
S.
, and
Chakraborty
,
S.
,
2018
, “
Wettability-Mediated Dynamics of Two-Phase Flow in Microfluidic T-Junction
,”
Phys. Fluids
,
30
(
12
), p.
122106
.10.1063/1.5054898
27.
Wang
,
W.
,
Liu
,
Z.
,
Jin
,
Y.
, and
Cheng
,
Y.
,
2011
, “
LBM Simulation of Droplet Formation in Micro-Channels
,”
Chem. Eng. J.
,
173
(
3
), pp.
828
836
.10.1016/j.cej.2011.08.040
28.
Link
,
D. R.
,
Anna
,
S. L.
,
Weitz
,
D. A.
, and
Stone
,
H. A.
,
2004
, “
Geometrically Mediated Breakup of Drops in Microfluidic Devices
,”
Phys. Rev. Lett.
,
92
(
5
), p.
054503
.10.1103/PhysRevLett.92.054503
29.
Salkin
,
L.
,
Schmit
,
A.
,
Courbin
,
L.
, and
Panizza
,
P.
,
2013
, “
Passive Breakups of Isolated Drops and One-Dimensional Assemblies of Drops in Microfluidic Geometries: Experiments and Models
,”
Lab Chip
,
13
(
15
), pp.
3022
3032
.10.1039/c3lc00040k
30.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Kazemi
,
R.
, and
Ghalandari
,
M.
,
2021
, “
Droplet Formation in a Microchannel T-Junction With Different Step Structure Position
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072102
.10.1115/1.4048186
31.
Malekzadeh
,
S.
, and
Roohi
,
E.
,
2015
, “
Investigation of Different Droplet Formation Regimes in a T-Junction Microchannel Using the VOF Technique in OpenFOAM
,”
Microgravity Sci. Technol.
,
27
(
3
), pp.
231
243
.10.1007/s12217-015-9440-2
32.
Carlson
,
A.
,
Do-Quang
,
M.
, and
Amberg
,
G.
,
2010
, “
Droplet Dynamics in a Bifurcating Channel
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
397
405
.10.1016/j.ijmultiphaseflow.2010.01.002
33.
Tornberg
,
A. K.
, and
Engquist
,
B.
,
2000
, “
A Finite Element Based Level-Set Method for Multiphase Flow Applications
,”
Comput. Vis. Sci.
,
3
(
1–2
), pp.
93
101
.10.1007/s007910050056
34.
Deka
,
D. K.
, and
Pati
,
S.
,
2021
, “
Influence of Wettability and Initial Size on the Merging Dynamics of Droplet Within a Y-Shaped Bifurcating Channel
,”
Fluid Dyn. Res.
,
53
(
3
), p.
035506
.10.1088/1873-7005/ac075e
35.
Deka
,
D. K.
,
Pati
,
S.
, and
Randive
,
P. R.
,
2022
, “
Implications of Capillarity-Wettability Interaction on Geometrically Mediated Droplet Splitting Mechanism
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
633
, p.
127873
.10.1016/j.colsurfa.2021.127873
36.
Johansson
,
N.
,
2011
, “Implementation of a Standard Level Set Method for Incompressible Two-Phase Flow Simulations,” Master's degree thesis,
Uppsala University
,
Sweden
.
37.
Reddy
,
J. N.
,
2019
,
Introduction to the Finite Element Method
, 4th ed.,
McGraw-Hill Education
,
New York
.
38.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
, 2nd ed.,
Englewood Cliffs
,
NJ
.
39.
van der Graaf
,
S.
,
Nisisako
,
T.
,
Schroën
,
C. G. P. H.
,
van der Sman
,
R. G. M.
, and
Boom
,
R. M.
,
2006
, “
Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel
,”
Langmuir
,
22
(
9
), pp.
4144
4152
.10.1021/la052682f
You do not currently have access to this content.