Abstract

A third-order nonlinear multimodal model is developed for tanks with nonflat bottoms. A six-node finite element model is used to determine the mode shapes of the velocity potential and the associated natural sloshing frequencies. Using this modal information, equations of motion are developed that accommodate the nonlinear coupling among the first three sloshing modes. Damping arising from screens is incorporated into the model using the principle of virtual work. The equations of motion are ordinary differential equations that are solved using the Runge–Kutta–Gill numerical time-stepping method. The model is evaluated with an existing third-order nonlinear multimodal model for a flat-bottom tank and is found to be in excellent agreement. Demonstrative simulations are conducted for tanks with sloped-, boxed-, and ramped-bottoms. The resulting sloshing forces and wave heights at the tank end wall are calculated and presented using time series plots and frequency response plots. The excitation of higher‐order sloshing modes through modal coupling results in larger wave heights, and shallower wave troughs. The sloshing forces are less impacted by the responses of higher modes. Secondary resonances are clearly visible in several frequency response plots at frequencies that correspond to the natural sloshing frequency of a higher‐order mode divided by an integer. The model is applicable to tanks that are of intermediate water depth with moderate excitation amplitudes, where the response of the second‐ and third‐order sloshing modes are less than the fundamental mode.

References

1.
Love
,
J. S.
,
Morava
,
B.
,
Robinson
,
J. K.
, and
Haskett
,
T. C.
,
2021
, “
Tuned Sloshing Dampers in Tall Buildings: A Practical Performance-Based Design Approach
,”
Pract. Period. Struct. Des. Constr.
,
26
(
3
), epub.10.1061/(ASCE)SC.1943-5576.0000582
2.
Warnitchai
,
P.
, and
Pinkaew
,
T.
,
1998
, “
Modelling of Liquid Sloshing in Rectangular Tanks With Flow-Dampening Devices
,”
Eng. Struct.
,
20
(
7
), pp.
593
600
.10.1016/S0141-0296(97)00068-0
3.
Deng
,
X.
, and
Tait
,
M. J.
,
2009
, “
Theoretical Modeling of TLD With Different Tank Geometries Using Linear Long Wave Theory
,”
ASME J. Vib. Acoust.
,
131
(
4
), p.
0410141
.10.1115/1.3142873
4.
Tait
,
M. J.
, and
Deng
,
X.
,
2008
, “
The Performance of Structure-Tuned Liquid Damper Systems With Different Tank Geometries
,”
Struct. Control Heal. Monit.
, 17(3), pp.
254
299
.
5.
Deng
,
X.
, and
Tait
,
M. J.
,
2008
, “
Equivalent Mechanical Models of Tuned Liquid Dampers With Different Tank Geometries
,”
Can. J. Civ. Eng.
,
35
(
10
), pp.
1088
1101
.10.1139/L08-044
6.
Love
,
J. S.
, and
Tait
,
M. J.
,
2014
, “
Linearized Sloshing Model for 2D Tuned Liquid Dampers With Modified Bottom Geometries
,”
Can. J. Civ. Eng.
,
41
(
2
), pp.
106
117
.10.1139/cjce-2013-0106
7.
Gardarsson
,
S.
,
Yeh
,
H.
, and
Reed
,
D.
,
2001
, “
Behavior of Sloped-Bottom Tuned Liquid Dampers
,”
J. Eng. Mech.
,
127
(
3
), pp.
266
271
.10.1061/(ASCE)0733-9399(2001)127:3(266)
8.
Hasheminejad
,
S. M.
, and
Soleimani
,
H.
,
2017
, “
An Analytical Solution for Free Liquid Sloshing in a Finite-Length Horizontal Cylindrical Container Filled to an Arbitrary Depth
,”
Appl. Math. Model.
,
48
, pp.
338
352
.10.1016/j.apm.2017.03.060
9.
Seymour
,
B. R.
, and
Mortell
,
M. P.
,
2007
, “
Resonant Hydraulic Sloshing in a Tank of Variable Depth
,”
Z. Für Angew. Math. Phys.
,
58
(
5
), pp.
818
831
.10.1007/s00033-007-5091-5
10.
Lukovsky
,
I. A.
,
2015
,
Nonlinear Dynamics: Mathematical Models for Rigid Bodies With a Liquid
,
Walter de Gruyter GmbH
,
Boston, MA
.
11.
Lepelletier
,
T. G.
, and
Raichlen
,
F.
,
1988
, “
Nonlinear Oscillations in Rectangular Tanks
,”
J. Eng. Mech.
,
114
(
1
), pp.
1
23
.10.1061/(ASCE)0733-9399(1988)114:1(1)
12.
Tait
,
M. J.
,
El Damatty
,
A. A.
,
Isyumov
,
N.
, and
Siddique
,
M. R.
,
2005
, “
Numerical Flow Models to Simulate Tuned Liquid Dampers (TLD) With Slat Screens
,”
J. Fluids Struct.
,
20
(
8
), pp.
1007
1023
.10.1016/j.jfluidstructs.2005.04.004
13.
Faltinsen
,
O. M.
,
Rognebakke
,
O. F.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
,
2000
, “
Multidimensional Modal Analysis of Nonlinear Sloshing in a Rectangular Tank With Finite Water Depth
,”
J. Fluid Mech.
,
407
, pp.
201
234
.10.1017/S0022112099007569
14.
Love
,
J. S.
, and
Tait
,
M. J.
,
2010
, “
Nonlinear Simulation of a Tuned Liquid Damper With Damping Screens Using a Modal Expansion Technique
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1058
1077
.10.1016/j.jfluidstructs.2010.07.004
15.
Zhang
,
Z.
,
2022
, “
Understanding and Exploiting the Nonlinear Behavior of Tuned Liquid Dampers (TLDs) for Structural Vibration Control by Means of a Nonlinear Reduced-Order Model (ROM)
,”
Eng. Struct.
,
251
(
PB
), p.
113524
.10.1016/j.engstruct.2021.113524
16.
Marivani
,
M.
, and
Hamed
,
M. S.
,
2014
, “
Numerical Study of Slat Screen Pattern Effect on Design Parameters of Tuned Liquid Dampers
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
061201
.10.1016/j.compstruc.2009.05.010
17.
McNamara
,
K. P.
,
Awad
,
B. N.
,
Tait
,
M. J.
, and
Love
,
J. S.
,
2021
, “
Incompressible Smoothed Particle Hydrodynamics Model of a Rectangular Tuned Liquid Damper Containing Screens
,”
J. Fluids Struct.
,
103
, p.
103295
.10.1016/j.jfluidstructs.2021.103295
18.
Marsh
,
A. P.
,
Prakash
,
M.
,
Semercigil
,
S. E.
, and
Turan
,
Ö. F.
,
2010
, “
A Shallow-Depth Sloshing Absorber for Structural Control
,”
J. Fluids Struct.
,
26
(
5
), pp.
780
792
.10.1016/j.jfluidstructs.2010.03.006
19.
Love
,
J. S.
, and
Tait
,
M. J.
,
2013
, “
Parametric Depth Ratio Study on Tuned Liquid Dampers: Fluid Modelling and Experimental Work
,”
Comput. Fluids
,
79
, pp.
13
26
.10.1016/j.compfluid.2013.03.004
20.
Huebner
,
K. H.
,
Dewhirst
,
D. L.
,
Smith
,
D. E.
, and
Byron
,
T. G.
,
2004
,
The Finite Element Method for Engineers
,
Wiley
,
New York
.
21.
Silvester
,
P.
,
1969
, “
High-Order Polynomial Triangular Finite Elements for Potential Problems
,”
Int. J. Eng. Sci.
,
7
(
8
), pp.
849
861
.10.1016/0020-7225(69)90065-2
22.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Equivalent Linearized Mechanical Model for Tuned Liquid Dampers of Arbitrary Tank Shape
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061105
.10.1115/1.4004080
23.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Non-Linear Multimodal Model for Tuned Liquid Dampers of Arbitrary Tank Geometry
,”
Int. J. Non Linear. Mech.
,
46
(
8
), pp.
1065
1075
.10.1016/j.ijnonlinmec.2011.04.028
24.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
,
Cambridge, UK
.
25.
Waterhouse
,
D. D.
,
1994
, “
Resonant Sloshing Near a Critical Depth
,”
J. Fluid Mech.
,
281
, pp.
313
318
.10.1017/S0022112094003125
26.
McNamara
,
K. P.
, and
Tait
,
M. J.
,
2022
, “
Modeling the Response of Structure–Tuned Liquid Damper Systems Under Large Amplitude Excitation Using Smoothed Particle Hydrodynamics
,”
ASME J. Vib. Acoust.
,
144
(
1
), p.
011008
.10.1115/1.4051266
You do not currently have access to this content.