Abstract

The blade slip factor significantly influences the prediction accuracy of the self-closure one-dimensional flow model for side chambers of centrifugal pumps. Wiesner's and Stodola's slip factors, which are used to formulate the blade outlet pressure and served as the boundary condition for the model, are examined, which is an improvement of the previous study (Gu et al., 2020, “A Pressure Model for Open Rotor–Stator Cavities: An Application to an Adjustable-Speed Centrifugal Pump With Experimental Validation,” ASME J. Fluids Eng., 142(10), p. 101301). Both computational fluid dynamics (CFD) simulations and experiments for the centrifugal pump are conducted to support the improvement. A good agreement exists between the performance at the best efficiency points (BEPs) of different rotating speeds obtained by simulations and experiments. Through the CFD analysis, the flow in the impeller remarkably deviates from the blade-congruent flow, especially in the quasi-triangular regions downstream of the throats. Meanwhile, the reason for pressure over-predictions of the side chamber one-dimensional flow model that embeds Wiesner's slip factor (FMW) is that Wiesner's expression underestimates the impeller flow deflection and overestimates pressure boundary. By contrast, the side chamber one-dimensional flow model with Stodola's slip factor (FMS) is closer to CFD in terms of relative flow angle and chamber inlet pressure. Compared with the side chamber pressure measurements, the accuracy of FMS is upgraded approximately by 3.5% than FMW. At the BEPs of different rotating speeds, FMS generates lower shroud thrust coefficients but slightly greater volumetric efficiencies than FMW. This work provides a simple approach to better calculate flow characteristics in the side chambers.

References

1.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
, 2nd ed.,
Springer-Verlag
,
Berlin
.
2.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Schiestel
,
R.
,
2005
, “
Batchelor Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Throughflow
,”
Phys. Fluids
,
17
(
7
), pp.
075110
075668
.10.1063/1.1964791
3.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Le Gal
,
P.
,
2005
, “
Turbulent Rotating Disk Flow With Inward Throughflow
,”
J. Fluid Mech.
,
522
, pp.
253
262
.10.1017/S0022112004002046
4.
Launder
,
B.
,
Poncet
,
S.
, and
Serre
,
E.
,
2010
, “
Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
229
248
.10.1146/annurev-fluid-121108-145514
5.
Daily
,
J. W.
,
Ernst
,
W. D.
, and
Asbedian
,
V. V.
,
1964
,
Enclosed Rotating Disks With Superposed Throughflow: Mean Steady and Periodic Unsteady Characteristics of the Induced Flow
,
Hydrodynamics Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
6.
Kurokawa
,
J.
, and
Toyokura
,
T.
,
1976
, “
Axial Thrust, Disk Friction Torque and Leakage Loss of Radial Flow Turbomachinery
,”
Proceedings of Pumps and Turbines Conference
, Glasgow, UK, pp.
19T16
19T19
.
7.
Schröder
,
T. R.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Experimental Investigation of Centrifugal Flow in Rotor-Stator Cavities at High Reynolds Numbers > 108
,”
Int. J. Turbomach. Propul. Power
,
6
(
2
), p.
13
.10.3390/ijtpp6020013
8.
Will
,
B. C.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2012
, “
Investigation of the Flow in the Impeller Side Clearances of a Centrifugal Pump With Volute Casing
,”
J. Therm. Sci.
,
21
(
3
), pp.
197
208
.10.1007/s11630-012-0536-3
9.
Li
,
W. G.
,
2013
, “
Model of Flow in the Side Chambers of an Industrial Centrifugal Pump for Delivering Viscous Oil
,”
ASME J. Fluids Eng.
,
135
(
5
), p. 051201.10.1115/1.4023664
10.
Zhang
,
S.
,
Li
,
H. X.
, and
Xi
,
D. K.
,
2019
, “
Investigation of the Integrated Model of Side Chamber, Wear-Rings Clearance, and Balancing Holes for Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
141
(
10
), p. 101101.10.1115/1.4043059
11.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
, and
Zhang
,
J. F.
,
2020
, “
A Pressure Model for Open Rotor-Stator Cavities: An Application to an Adjustable-Speed Centrifugal Pump With Experimental Validation
,”
ASME J. Fluids Eng.
,
142
(
10
), p. 101301.10.1115/1.4047532
12.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
558
566
.10.1115/1.3616734
13.
Choi
,
Y. D.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2006
, “
Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
341
349
.10.1115/1.2169815
14.
Bourabia
,
L.
,
Khalfallah
,
S.
,
Cerdoun
,
M.
, and
Chettibi
,
T.
,
2020
, “
An Efficient Methodology to Generate Optimal Inputs for the Preliminary Design of Centrifugal Compressor Impellers
,”
Proc. Inst. Mech. Eng., Part E J. Process Mech. Eng.
,
234
(
4
), pp.
353
366
.10.1177/0954408920927658
15.
Stodola
,
A.
,
1927
,
Steam and Gas Turbines
,
McGraw-Hill
,
New York
.
16.
Liu
,
H. L.
,
Wang
,
K.
,
Yuan
,
S. Q.
,
Tan
,
M. G.
,
Wang
,
Y.
, and
Dong
,
L.
,
2013
, “
Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
135
(
1
), p. 011103.10.1115/1.4023077
17.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S. L.
,
2019
, “
Theoretical Model of Energy Performance Prediction and BEP Determination for Centrifugal Pump as Turbine
,”
Energy
,
172
, pp.
712
732
.10.1016/j.energy.2019.01.162
18.
Kan
,
K.
,
Yang
,
Z. X.
,
Lyu
,
P.
,
Zheng
,
Y.
, and
Shen
,
L.
,
2021
, “
Numerical Study of Turbulent Flow Past a Rotating Axial-Flow Pump Based on a Level-Set Immersed Boundary Method
,”
Renewable Energy
,
168
(
6
), pp.
960
971
.10.1016/j.renene.2020.12.103
19.
Li
,
X.
,
Chen
,
B.
,
Luo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterisation in a Centrifugal Pump
,”
Renewable Energy
,
151
, pp.
475
487
.10.1016/j.renene.2019.11.049
20.
Wu
,
Y. T.
,
Xu
,
K. W.
, and
Kim
,
H.
,
2021
, “
Numerical Study on Two-Phase Flow in Horizontal Pipe
,”
J. Drain. Irrig. Mach. Eng.
,
39
(
4
), pp.
379
385
.10.3969/j.issn.1674-8530.19.0291
21.
Gantar
,
M.
,
Florjancic
,
D.
, and
Sirok
,
B.
,
2002
, “
Hydraulic Axial Thrust in Multistate Pumps - Origins and Solutions
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
336
341
.10.1115/1.1454110
22.
Torabi
,
R.
, and
Nourbakhsh
,
S. A.
,
2016
, “
The Effect of Viscosity on Performance of a Low Specific Speed Centrifugal Pump
,”
Int. J. Rotating Mach.
,
2016
, pp.
1
9
.10.1155/2016/3878357
23.
Kye
,
B.
,
Park
,
K.
,
Choi
,
H.
,
Lee
,
M.
, and
Kim
,
J. H.
,
2018
, “
Flow Characteristics in a Volute-Type Centrifugal Pump Using Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
72
, pp.
52
60
.10.1016/j.ijheatfluidflow.2018.04.016
24.
Zhang
,
R. H.
,
Yun
,
L. C.
, and
Li
,
J.
,
2019
, “
The Effect of Impeller Slot Jet on Centrifugal Pump Performance
,”
J. Hydrodyn.
,
31
(
4
), pp.
733
739
.10.1007/s42241-018-0161-z
25.
Cao
,
L.
,
Zhang
,
Y. Y.
,
Wang
,
Z. W.
,
Xiao
,
Y. X.
, and
Liu
,
R. X.
,
2015
, “
Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
7
), p. 071101.10.1115/1.4029761
26.
Mortazavi
,
F.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Numerical Investigation of Back Vane Design and Its Impact on Pump Performance
,”
ASME J. Fluids Eng.
,
139
(
12
), p. 121104.10.1115/1.4037281
27.
Mohammedali
,
A. A. M.
, and
Kim
,
K. S.
,
2021
, “
Development of High-Efficient Centrifugal Pump Through Optimization of Its Volute Tongue and Expeller Vane
,”
ASME J. Fluids Eng.
,
143
(
7
), p. 071204.10.1115/1.4050345
28.
Dong
,
W.
, and
Chu
,
W. L.
,
2018
, “
Numerical Investigation of the Fluid Flow Characteristics in the Hub Plate Crown of a Centrifugal Pump
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
10
.10.1186/s10033-018-0264-z
29.
Ghaderi
,
M.
,
Najafi
,
A. F.
, and
Nourbakhsh
,
A.
,
2015
, “
Improving Slip Factor Prediction for Centrifugal Pumps Using Artificial Neural Networks
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
229
(
4
), pp.
431
438
.10.1177/0957650915580884
30.
Abdolahnejad
,
E.
,
Moghimi
,
M.
, and
Derakhshan
,
S.
,
2021
, “
Experimental and Numerical Investigation of Slip Factor Reduction in Centrifugal Slurry Pump
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
4
), pp.
1
14
.10.1007/s40430-021-02831-x
31.
Capurso
,
T.
,
Bergamini
,
L.
, and
Torresi
,
M.
,
2019
, “
Design and CFD Performance Analysis of a Novel Impeller for Double Suction Centrifugal Pumps
,”
Nucl. Eng. Des.
,
341
, pp.
155
166
.10.1016/j.nucengdes.2018.11.002
32.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
,
Zhang
,
J. F.
,
Nikolajew
,
E.
, and
Gan
,
X. C.
,
2018
, “
Investigations on Flow Characteristics in Diffuser-Discharge-Channel of Volute Casing
,”
ASME
Paper No. FEDSM2018-83051. 10.1115/FEDSM2018-83051
33.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
,
Wang
,
W. J.
,
Zhang
,
F.
,
Wang
,
P.
,
Appiah
,
D.
, and
Liu
,
Y.
,
2019
, “
Clocking Effect of Vaned Diffuser on Hydraulic Performance of High-Power Pump by Using the Numerical Flow Loss Visualization Method
,”
Energy
,
170
, pp.
986
997
.10.1016/j.energy.2018.12.204
34.
Qian
,
Z. D.
,
Zhao
,
Z. L.
,
Guo
,
Z. W.
,
Thapa
,
B. S.
, and
Thapa
,
B.
,
2020
, “
Erosion Wear on Runner of Francis Turbine in Jhimruk Hydroelectric Center
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
094502
.10.1115/1.4047230
35.
Wang
,
C. Y.
,
Wang
,
F. J.
,
Xie
,
L. H.
,
Wang
,
B. H.
,
Yao
,
Z. F.
, and
Xiao
,
R. F.
,
2021
, “
On the Vortical Characteristics of Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061201
.10.1115/1.4049687
36.
Mohr
,
M.
,
Gwiasda
,
B.
, and
Böhle
,
M.
,
2020
, “
A Simple Analytical Model for Head Estimation of Noncavitating Inducers With Arbitrary Shape
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061301
.10.1115/1.4046188
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
38.
Ji
,
L. L.
,
Li
,
W.
,
Shi
,
W. D.
,
Chang
,
H.
, and
Yang
,
Z. Y.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
39.
Braun
,
O.
,
2009
, “
Part Load Flow in Radial Centrifugal Pumps
,” Ph.D. thesis,
EPFL
,
Lausanne, Switzerland
.
40.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2009
, “
A CFD Parametric Study of Geometrical Variations on the Pressure Pulsations and Performance Characteristics of a Centrifugal Pump
,”
Comput. Fluids
,
38
(
6
), pp.
1243
1257
.10.1016/j.compfluid.2008.11.013
41.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
,
Xing
,
L.
,
Stephen
,
C.
,
Zhang
,
F.
, and
Wang
,
X. L.
,
2018
, “
Effects of Blade Thickness on Hydraulic Performance and Structural Dynamic Characteristics of High-Power Coolant Pump at Overload Condition
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
8
), pp.
992
1003
.10.1177/0957650918764729
42.
Huang
,
X. B.
,
Yang
,
W.
,
Li
,
Y. J.
,
Qiu
,
B. Y.
,
Guo
,
Q.
, and
Liu
,
Z. Q.
,
2019
, “
Review on the Sensitization of Turbulence Models to Rotation/Curvature and the Application to Rotating Machinery
,”
Appl. Math. Comput.
,
341
, pp.
46
69
.10.1016/j.amc.2018.08.027
43.
Stephen
,
C.
,
Yuan
,
S. Q.
,
Pei
,
J.
, and
Cheng G
,
X.
,
2018
, “
Numerical Flow Prediction in Inlet Pipe of Vertical Inline Pump
,”
ASME J. Fluids Eng.
,
140
(
5
), p. 051201.10.1115/1.4038533
44.
Yang
,
Y.
,
Zhou
,
L.
,
Shi
,
W. D.
,
He
,
Z. M.
,
Han
,
y.
, and
Xiao
,
Y.
,
2021
, “
Interstage Difference of Pressure Pulsation in a Three-Stage Electrical Submersible Pump
,”
J. Pet. Sci. Eng.
,
196
, p.
107653
.10.1016/j.petrol.2020.107653
45.
Gu
,
Y. D.
,
Böhle, M.
,
Schimpf
,
A.
, and
Yuan
,
S. Q.
,
2021
, “
Aerostatic Bearing With Porous Restrictor: Research Status and Future Perspectives
,”
J. Drain. Irrig. Mach. Eng.
,
39
(
8
), pp.
818
825
(in Chinese).10.3969/j.issn.1674-8530.19.0277
46.
Gu
,
Y.
D.,
Cheng
,
J.
W.,
Xie
,
C.
J.,
Li
,
L.
Y.
, and
Zheng
,
C.
G.,
2022
, “
Theoretical and Numerical Investigations on Static Characteristics of Aerostatic Porous Journal Bearings
,”
Machines
,
10
(
3
), p.
171
.10.3390/machines10030171
You do not currently have access to this content.