Abstract

This study is a computational analysis of hydrodynamic alterations of flow such as secondary current, turbulent kinetic energy, and shear stress, in an open channel with an increased vegetation density at an inclined bank. Two arrangements of rigid vegetation at an inclined bank, linear and staggered, are investigated for five different vegetation density. The computational analyses are performed under constant flow and stable bed conditions. The variations of stream wise flow velocity, turbulent kinetic energy, and Reynolds stress along the main channel are evaluated and presented for each vegetation density. The results illustrated the impacts of vegetation density on the entire channel flow characteristics. These results are further analyzed based on average bed shear stress calculations. The main outcome of the study demonstrated that combined effect of inclined bank and effect of partly obstructed flow significantly generates Kelvin-Helmholtz type instability due to the presence of inflection point at different location along a vegetation cover. The calculated Reynolds stresses are higher at the main channel bed near the vertical bank, but shift to midflow depths near the boundary between the main channel and inclined bank. The turbulence kinetic energy profiles in the main channel and at the inclined bank exhibited results that were similar and parallel to the simulated stream wise velocities and Reynolds stresses. Furthermore, it is found that the ratio between bed shear stress and turbulent kinetic energy is almost 0.3 as the depth approaches the channel bed.

References

1.
Valyrakis
,
M.
,
Liu
,
D.
,
Mcgann
,
N.
,
Türker
,
U.
, and
Yagci
,
O.
,
2015
, “
Characterising the Effect of Increasing River Bank Vegetation on the Flow Field Across the Channel
,”
Proceedings of the 36th IAHR World Congress,
The Hague, Delft, The Netherlands, June 28–July 3, pp. 803–807.https://avesis.itu.edu.tr/yayin/268951bf-4956-490f-92cf-8eb988ec6160/characterising-the-effectof-increasing-riverbank-vegetation-on-the-flow-field-across-the-channel
2.
Rowiński
,
P. M.
,
Västilä
,
K.
,
Aberle
,
J.
,
Järvelä
,
J.
, and
Kalinowska
,
M. B.
,
2018
, “
How Vegetation Can Aid in Coping With River Management Challenges: A Brief Review
,”
Ecohydrol. Hydrobiol.
,
18
(
4
), pp.
345
354
.10.1016/j.ecohyd.2018.07.003
3.
Jahadi
,
M.
,
Afzalimehr
,
H.
, and
Rowinski
,
P. M.
,
2019
, “
Flow Structure Within a Vegetation Patch in a Gravel-Bed River
,”
J. Hydrol. Hydromech.
,
67
(
2
), pp.
154
162
.10.2478/johh-2019-0001
4.
Türker
,
U.
,
Yagci
,
O.
, and
Kabdasli
,
M. S.
,
2019
, “
Impact of Nearshore Vegetation on Coastal Dune Erosion: Assessment Through Laboratory Experiments
,”
Environ. Earth Sci.
,
78
(
19
), p.
584
.10.1007/s12665-019-8602-8
5.
Zhang
,
H.
,
Wang
,
Z.
,
Dai
,
L.
, and
Xu
,
W.
,
2015
, “
Influence of Vegetation on Turbulence Characteristics and Reynolds Shear in Partly Vegetated Channel
,”
ASME J. Fluids Eng.
,
137
(
6
), p. 061201.10.1115/1.4029608
6.
Zhang
,
Y.
,
Lai
,
X.
,
Zhang
,
L.
,
Song
,
K.
,
Yao
,
X.
,
Gu
,
L.
, and
Pang
,
C.
,
2020
, “
The Influence of Aquatic Vegetation on Flow Structure and Sediment Deposition: A Field Study in Dongting Lake, China
,”
J. Hydrol.
,
584
, p.
124644
.10.1016/j.jhydrol.2020.124644
7.
Zhou
,
J.
,
Bao
,
W.
,
Tick
,
G. R.
,
Moftakhari
,
H.
,
Li
,
Y.
, and
Cheng
,
L.
,
2021
, “
A Modified Chezy Formula for One-Dimensional Unsteady Frictional Resistance in Open Channel Flow
,”
ASME J. Fluids Eng.
,
143
(
5
), p. 051303.10.1115/1.4049681
8.
Kevin
,
F.
,
Christian
,
S.
, and
Ali
,
K.
,
2021
, “
Numerical Study on the Effect of Bank Vegetation on the Hydrodynamics of the American River Under Flood Conditions
,”
J. Hydraul. Eng.
,
147
(
9
), p.
05021006
.10.1061/(ASCE)HY.1943-7900.0001912
9.
Liu
,
D.
,
Valyrakis
,
M.
, and
Williams
,
R.
,
2017
, “
Flow Hydrodynamics Across Open Channel Flows With Riparian Zones: Implications for Riverbank Stability
,”
Water
,
9
(
9
), p.
720
.10.3390/w9090720
10.
Hopkinson
,
L.
, and
Wynn
,
T.
,
2009
, “
Vegetation Impacts on Near Bank Flow
,”
Ecohydrology
,
2
(
4
), pp.
404
418
.10.1002/eco.87
11.
Krzeminska
,
D.
,
Kerkhof
,
T.
,
Skaalsveen
,
K.
, and
Stolte
,
J.
,
2019
, “
Effect of Riparian Vegetation on Stream Bank Stability in Small Agricultural Catchments
,”
CATENA
,
172
, pp.
87
96
.10.1016/j.catena.2018.08.014
12.
Caroppi
,
G.
,
Västilä
,
K.
,
Järvelä
,
J.
,
Rowiński
,
P. M.
, and
Giugni
,
M.
,
2019
, “
Turbulence at Water-Vegetation Interface in Open Channel Flow: Experiments With Natural-Like Plants
,”
Adv. Water Resour.
,
127
, pp.
180
191
.10.1016/j.advwatres.2019.03.013
13.
Caroppi
,
G.
,
Gualtieri
,
P.
,
Fontana
,
N.
, and
Giugni
,
M.
,
2020
, “
Effects of Vegetation Density on Shear Layer in Partly Vegetated Channels
,”
J. Hydro-Environ. Res.
,
30
, pp.
82
90
.10.1016/j.jher.2020.01.008
14.
Dupuis
,
V.
,
Proust
,
S.
,
Berni
,
C.
, and
Paquier
,
A.
,
2017
, “
Mixing Layer Development in Compound Channel Flows With Submerged and Emergent Rigid Vegetation Over the Floodplains
,”
Exp. Fluids
,
58
(
4
), p.
30
.10.1007/s00348-017-2319-9
15.
Shimony
,
A.
,
Shvarts
,
D.
,
Malamud
,
G.
,
di Stefano
,
C. A.
,
Kuranz
,
C. C.
, and
Drake
,
R. P.
,
2016
, “
The Effect of a Dominant Initial Single Mode on the Kelvin–Helmholtz Instability Evolution: New Insights on Previous Experimental Results
,”
ASME J. Fluids Eng.
,
138
(
7
), p. 070902.10.1115/1.4032530
16.
Neary
,
V. S.
,
2003
, “
Numerical Solution of Fully Developed Flow With Vegetative Resistance
,”
J. Eng. Mech.
,
129
(
5
), pp.
558
563
.10.1061/(ASCE)0733-9399(2003)129:5(558)
17.
Neary
,
V. S.
,
Constantinescu
,
S. G.
,
Bennett
,
S. J.
, and
Diplas
,
P.
,
2012
, “
Effects of Vegetation on Turbulence, Sediment Transport, and Stream Morphology
,”
J. Hydraul. Eng.
,
138
(
9
), pp.
765
776
.10.1061/(ASCE)HY.1943-7900.0000168
18.
Nepf
,
H. M.
,
2012
, “
Hydrodynamics of Vegetated Channels
,”
J. Hydraul. Res.
,
50
(
3
), pp.
262
279
.10.1080/00221686.2012.696559
19.
Ghani
,
U.
,
Anjum
,
N.
,
Pasha
,
G. A.
, and
Ahmad
,
M.
,
2019
, “
Investigating the Turbulent Flow Characteristics in an Open Channel With Staggered Vegetation Patches
,”
River Res. Appl.
,
35
(
7
), pp.
966
978
.10.1002/rra.3460
20.
Anjum
,
N.
, and
Tanaka
,
N.
,
2020
, “
Hydrodynamics of Longitudinally Discontinuous, Vertically Double Layered and Partially Covered Rigid Vegetation Patches in Open Channel Flow
,”
River Res. Appl.
,
36
(
1
), pp.
115
127
.10.1002/rra.3546
21.
Rahimi
,
H. R.
,
Tang
,
X.
,
Singh
,
P.
,
Li
,
M.
, and
Alaghmand
,
S.
,
2020
, “
Open Channel Flow Within and Above a Layered Vegetation: Experiments and First-Order Closure Modeling
,”
Adv. Water Resour.
,
137
, p.
103527
.10.1016/j.advwatres.2020.103527
22.
Valyrakis
,
M.
,
Liu
,
D.
,
Türker
,
U.
, and
Yagci
,
O.
,
2021
, “
The Role of Increasing Riverbank Vegetation Density on Flow Dynamics Across an Asymmetrical Channel
,”
Environ. Fluid Mech.
,
21
(
3
), pp.
643
666
.10.1007/s10652-021-09791-9
23.
Lane
,
S. N.
,
Bradbrook
,
K. F.
,
Richards
,
K. S.
,
Biron
,
P. A.
, and
Roy
,
A. G.
,
1999
, “
The Application of Computational Fluid Dynamics to Natural River Channels: Three-Dimensional Versus Two-Dimensional Approaches
,”
Geomorphology
,
29
(
1–2
), pp.
1
20
.10.1016/S0169-555X(99)00003-3
24.
D'Ippolito
,
A.
,
Lauria
,
A.
,
Alfonsi
,
G.
, and
Calomino
,
F.
,
2019
, “
Investigation of Flow Resistance Exerted by Rigid Emergent Vegetation in Open Channel
,”
Acta Geophys.
,
67
(
3
), pp.
971
986
.10.1007/s11600-019-00280-8
25.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat, and Mass Transfer 4: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, Oct. 12–17, Begell House, New York
, pp.
625
632
.
26.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
27.
Bodnár
,
T.
, and
Příhoda
,
J.
,
2006
, “
Numerical Simulation of Turbulent Free-Surface Flow in Curved Channel
,”
Flow, Turbulence Combustion
,
76
(
4
), pp.
429
442
.10.1007/s10494-006-9030-x
28.
Brito
,
M.
,
Fernandes
,
J.
, and
Leal
,
J. B.
,
2016
, “
Porous Media Approach for RANS Simulation of Compound Open-Channel Flows With Submerged Vegetated Floodplains
,”
Environ. Fluid Mech.
,
16
(
6
), pp.
1247
1266
.10.1007/s10652-016-9481-0
29.
Kasiteropoulou
,
D.
,
Liakopoulos
,
A.
,
Michalolias
,
N.
, and
Κeramaris
,
Ε.
,
2017
, “
Numerical Modelling and Analysis of Turbulent Flow in an Open Channel With Submerged Vegetation
,”
Environ. Processes
,
4
(
S1
), pp.
47
61
.10.1007/s40710-017-0235-x
30.
Kuzmin
,
A.
,
2019
, “
Hysteresis of Shock Wave Locations in Divergent Bent Channels
,”
Comput. Fluids
,
182
, pp.
52
59
.10.1016/j.compfluid.2019.02.016
31.
Albayrak
,
I.
,
2008
, “An Experimental Study of Coherent Structures, Secondary Currents and Surface Boils and Their Interrelation in Open-Channel Flow,”
EPFL
.10.5075/epfl-thesis-4112
32.
Wilkerson
,
G. V.
, and
McGahan
,
J. L.
,
2005
, “
Depth-Averaged Velocity Distribution in Straight Trapezoidal Channels
,”
J. Hydraul. Eng.
,
131
(
6
), pp.
509
512
.10.1061/(ASCE)0733-9429(2005)131:6(509)
33.
Prandtl
,
L.
,
1952
, “
Essentials of Fluid Dynamics: With Applications to Hydraulics
,”
Aeronautics, Meteorology and Other Subjects
,
Blackie & Son
,
Bombay, India
.
34.
Nezu
,
I.
, and
Nakagawa
,
H.
,
1993
,
Turbulence in Open-Channel Flows, IAHR Monograph Series
,
AA Balkema
,
Rotterdam, The Netherlands
, pp.
1
281
.
35.
Blanckaert
,
K.
,
Duarte
,
A.
, and
Schleiss
,
A. J.
,
2010
, “
Influence of Shallowness, Bank Inclination and Bank Roughness on the Variability of Flow Patterns and Boundary Shear Stress Due to Secondary Currents in Straight Open-Channels
,”
Adv. Water Resour.
,
33
(
9
), pp.
1062
1074
.10.1016/j.advwatres.2010.06.012
36.
Nezu
,
I.
, and
Onitsuka
,
K.
,
2001
, “
Turbulent Structures in Partly Vegetated Open-Channel Flows With LDA and PI V Measurements
,”
J. Hydraul. Res.
,
39
(
6
), pp.
629
642
.10.1080/00221686.2001.9628292
37.
Tamai
,
N.
,
Asaeda
,
T.
, and
Ikeda
,
H.
,
1986
, “
Study on Generation of Periodical Large Surface Eddies in a Composite Channel Flow
,”
Water Resour. Res.
,
22
(
7
), pp.
1129
1138
.10.1029/WR022i007p01129
38.
White
,
B. L.
, and
Nepf
,
H. M.
,
2008
, “
A Vortex‐Based Model of Velocity and Shear Stress in a Partially Vegetated Shallow Channel
,”
Water Resour. Res.
,
44
(
1
), p. W01412.10.1029/2006WR005651
39.
White
,
B. L.
, and
Nepf
,
H. M.
,
2007
, “
Shear Instability and Coherent Structures in Shallow Flow Adjacent to a Porous Layer
,”
J. Fluid Mech.
,
593
, pp.
1
32
.10.1017/S0022112007008415
40.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
41.
Proust
,
S.
,
Fernandes
,
J. N.
,
Leal
,
J. B.
,
Rivière
,
N.
, and
Peltier
,
Y.
,
2017
, “
Mixing Layer and Coherent Structures in Compound Channel Flows: Effects of Transverse Flow, Velocity Ratio, and Vertical Confinement
,”
Water Resour. Res.
,
53
(
4
), pp.
3387
3406
.10.1002/2016WR019873
42.
Yang
,
K.
,
Cao
,
S.
, and
Knight
,
D. W.
,
2007
, “
Flow Patterns in Compound Channels With Vegetated Floodplains
,”
J. Hydraul. Eng.
,
133
(
2
), pp.
148
159
.10.1061/(ASCE)0733-9429(2007)133:2(148)
43.
Galperin
,
B.
,
Kantha
,
L. H.
,
Hassid
,
S.
, and
Rosati
,
A.
,
1988
, “
A Quasi-Equilibrium Turbulent Energy Model for Geophysical Flows
,”
J. Atmos. Sci.
,
45
(
1
), pp.
55
62
.10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
44.
Soulsby
,
R. L.
,
1983
, “
The Bottom Boundary Layer of Shelf Seas,
” Elsevier Oceanography Series, 35, pp.
189
266
.10.1016/S0422-9894(08)70503-8
45.
Soulsby
,
R. L.
, and
Dyer
,
K. R.
,
1981
, “
The Form of the Near-Bed Velocity Profile in a Tidally Accelerating Flow
,”
J. Geophys. Res.: Oceans
,
86
(
C9
), pp.
8067
8074
.10.1029/JC086iC09p08067
46.
Biron
,
P. M.
,
Robson
,
C.
,
Lapointe
,
M. F.
, and
Gaskin
,
S. J.
,
2004
, “
Comparing Different Methods of Bed Shear Stress Estimates in Simple and Complex Flow Fields
,”
Earth Surf. Process. Landforms
,
29
(
11
), pp.
1403
1415
.10.1002/esp.1111
47.
Afzalimehr
,
H.
, and
Subhasish
,
D. E. Y.
,
2009
, “
Influence of Bank Vegetation and Gravel Bed on Velocity and Reynolds Stress Distributions
,”
Int. J. Sediment Res.
,
24
(
2
), pp.
236
246
.10.1016/S1001-6279(09)60030-5
48.
Hopkinson
,
L. C.
, and
Wynn‐Thompson
,
T. M.
,
2016
, “
Comparison of Direct and Indirect Boundary Shear Stress Measurements Along Vegetated Streambanks
,”
River Res. Appl.
,
32
(
8
), pp.
1755
1764
.10.1002/rra.3010
49.
Valyrakis
,
M.
,
Diplas
,
P.
, and
Dancey
,
C. L.
,
2013
, “
Entrainment of Coarse Particles in Turbulent Flows: An Energy Approach
,”
J. Geophys. Res.
,
118
(
1
), pp.
42
53
.10.1029/2012JF002354
50.
Türker
,
U.
, and
Kabdaşlı
,
M. S.
,
2004
, “
Average Sediment Dislocation Analysis for Barred Profiles
,”
Ocean Eng.
,
31
(
14–15
), pp.
1741
1756
.10.1016/j.oceaneng.2004.03.008
51.
Al-Obaidi
,
K.
,
Xu
,
Y.
, and
Valyrakis
,
M.
,
2020
, “
The Design and Calibration of Instrumented Particles for Assessing Water Infrastructure Hazards
,”
J. Sensor Actuator Networks
,
9
(
3
), p.
36
.10.3390/jsan9030036
You do not currently have access to this content.