Abstract

Cloud cavitation usually appears on impeller blades of hydraulic machinery. When unsteady cloud cavitation travels downstream to a high-pressure region and collapses, performance drops and cavitation erosion appears. It is important to develop effective methods to mitigate the undesirable effects. By million years of natural selection, bird feather has presented excellent flow performance. As typical characteristic structure of bird feather, a number of barbs are supported by a central hollow shaft. Under inspiration of bird feathers, we presented a method of passive cavitation control. This method of passive cavitation control uses biomimetic protuberant stripes (PSs) mounted on a NACA66 hydrofoil. The effects of various biomimetic PS arrangements on the cavitation pattern, pressure fluctuation, and hydrodynamic load are numerically studied. Then, the cavitation control mechanism of the biomimetic PS is analyzed in detail. We observe that the biomimetic PSs not only inhibit the shedding of large-scale cloud cavitation but also reduce the cavitation size. Moreover, analysis shows that turbulence velocity fluctuation may be mitigated and boundary layer thickness is reduced with biomimetic PSs, which enhances the flow intensity in the main flow direction.

References

1.
Sun
,
W. H.
, and
Tan
,
L.
,
2020
, “
Cavitation-Vortex-Pressure Fluctuation Interaction in a Centrifugal Pump Using Bubble Rotation Modified Cavitation Model Under Partial Load
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051206
.10.1115/1.4045615
2.
Arndt
,
R. E. A.
,
Ellis
,
C. R.
, and
Paul
,
S.
,
1995
, “
Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
498
504
.10.1115/1.2817290
3.
Chang
,
N.
,
Ganesh
,
H.
,
Yakushiji
,
R.
, and
Ceccio
,
S. L.
,
2011
, “
Tip Vortex Cavitation Suppression by Active Mass Injection
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111301
.10.1115/1.4005138
4.
Lee
,
C. S.
,
Ahn
,
B. K.
,
Han
,
J. M.
, and
Kim
,
J. H.
,
2018
, “
Propeller Tip Vortex Cavitation Control and Induced Noise Suppression by Water Injection
,”
J. Mar. Sci. Technol.-Jpn.
,
23
(
3
), pp.
453
463
.10.1007/s00773-017-0484-4
5.
Timoshevskiy
,
M. V.
,
Zapryagaev
,
I. I.
,
Pervunin
,
K. S.
,
Maltsev
,
L. I.
,
Markovich
,
D. M.
, and
Hanjalic
,
K.
,
2018
, “
Manipulating Cavitation by a Wall Jet: Experiments on a 2D Hydrofoil
,”
Int. J. Multiphase Flow
,
99
, pp.
312
328
.10.1016/j.ijmultiphaseflow.2017.11.002
6.
De Giorgi
,
M. G.
,
Fontanarosa
,
D.
, and
Ficarella
,
A.
,
2020
, “
Active Control of Unsteady Cavitating Flows Over Hydrofoil
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111201
.10.1115/1.4047798
7.
Leger
,
A. T.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitation. Part 1. Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.10.1017/S0022112098002766
8.
Zarruk
,
G. A.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
, and
Phillips
,
A. W.
,
2014
, “
Experimental Study of the Steady Fluid-Structure Interaction of Flexible Hydrofoils
,”
J. Fluid Struct.
,
51
, pp.
326
343
.10.1016/j.jfluidstructs.2014.09.009
9.
Asnaghi
,
A.
,
Svennberg
,
U.
,
Gustafsson
,
R.
, and
Bensow
,
R. E.
,
2020
, “
Investigations of Tip Vortex Mitigation by Using Roughness
,”
Phys. Fluids
,
32
(
6
), p.
065111
.10.1063/5.0009622
10.
Danlos
,
A.
,
Mehal
,
J. E.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Study of the Cavitating Instability on a Grooved Venturi Profile
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101302
.10.1115/1.4027472
11.
Li
,
Y. J.
,
Chen
,
H. S.
,
Wang
,
J. D.
, and
Chen
,
D. R.
,
2010
, “
Effect of Grooves on Cavitation Around the Body of Revolution
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011301
.10.1115/1.4000648
12.
Choi
,
Y. D.
,
Kurokawa
,
J.
, and
Imamura
,
H.
,
2007
, “
Suppression of Cavitation in Inducers by J-Grooves
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
15
22
.10.1115/1.2375126
13.
Cheng
,
H. Y.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Suppressing Tip-Leakage Vortex Cavitation by Overhanging Grooves
,”
Exp. Fluids
,
61
(
7
), p.
159
.10.1007/s00348-020-02996-6
14.
Kamikura
,
Y.
,
Kobayashi
,
H.
,
Kawasaki
,
S.
, and
Iga
,
Y.
,
2019
, “
Three Dimensional Numerical Analysis of Inducer About Suppression of Cavitation Instabilities by Asymmetric Slits on Blades
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
3
), p.
032044
.10.1088/1755-1315/240/3/032044
15.
Xu
,
C.
, and
Khoo
,
B. C.
,
2020
, “
Dynamics of the Supercavitating Hydrofoil With Cavitator in Steady Flow Field
,”
Phys. Fluids
,
32
(
12
), p.
123307
.10.1063/5.0030907
16.
Amini
,
A.
,
Seo
,
J.
,
Rhee
,
S. H.
, and
Farhat
,
M.
,
2019
, “
Mitigating Tip Vortex Cavitation by a Flexible Trailing Thread
,”
Phys. Fluids
,
31
(
12
), p.
127103
.10.1063/1.5126376
17.
Gao
,
H. T.
,
Zhu
,
W. C.
,
Liu
,
Y. T.
, and
Yan
,
Y. Y.
,
2019
, “
Effect of Various Winglets on the Performance of Marine Propeller
,”
Appl. Ocean Res.
,
86
, pp.
246
256
.10.1016/j.apor.2019.03.006
18.
Zhu
,
B.
, and
Chen
,
H. X.
,
2012
, “
Cavitating Suppression of Low Specific Speed Centrifugal Pump With Gap Drainage Blades
,”
J. Hydrodyn.
,
24
(
5
), pp.
729
736
.10.1016/S1001-6058(11)60297-7
19.
Chen
,
H. X.
,
Ma
,
Z.
,
Zhang
,
W.
,
Zhu
,
B.
,
Zhang
,
R.
,
Wei
,
Q.
,
Zhang
,
Z. C.
,
Liu
,
C.
, and
He
,
J. W.
,
2017
, “
On the Hydrodynamics of Hydraulic Machinery and Flow Control
,”
J. Hydrodyn.
,
29
(
5
), pp.
782
789
.10.1016/S1001-6058(16)60789-8
20.
Petkovsek
,
M.
, and
Dular
,
M.
,
2013
, “
Simultaneous Observation of Cavitation Structures and Cavitation Erosion
,”
Wear
,
300
(
1–2
), pp.
55
64
.10.1016/j.wear.2013.01.106
21.
Dular
,
M.
, and
Petkovsek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion—Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
359
370
.10.1016/j.expthermflusci.2015.06.001
22.
Pham
,
T. M.
,
Larrarte
,
F.
, and
Fruman
,
D. H.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.10.1115/1.2822206
23.
Zhao
,
W. G.
,
Zhang
,
L. X.
,
Shao
,
X. M.
, and
Deng
,
J.
,
2010
, “
Numerical Study on the Control Mechanism of Cloud Cavitation by Obstacles
,”
J. Hydrodyn.
,
22
(
S1
), pp.
750
755
.10.1016/S1001-6058(10)60032-7
24.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.10.1115/1.2819499
25.
Zhang
,
L. X.
,
Chen
,
M.
, and
Shao
,
X. M.
,
2018
, “
Inhibition of Cloud Cavitation on a Flat Hydrofoil Through the Placement of an Obstacle
,”
Ocean Eng.
,
155
, pp.
1
9
.10.1016/j.oceaneng.2018.01.068
26.
An
,
H. L.
, and
Plesniak
,
M. W.
,
2008
, “
Cavitation Structures in a Venturi Flow With Various Backward Facing Steps
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071304
.10.1115/1.2948370
27.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Pervunin
,
K. S.
, and
el Moctar
,
O.
,
2020
, “
Experimental and Numerical Study of the Cavitation Surge Passive Control Around a Semi-Circular Leading-Edge Flat Plate
,”
J. Mar. Sci. Technol.-Jpn.
,
25
(
4
), pp.
1010
1023
.10.1007/s00773-019-00697-2
28.
Che
,
B. X.
,
Chu
,
N.
,
Schmidt
,
S. J.
,
Cao
,
L. L.
,
Likhachev
,
D.
, and
Wu
,
D. Z.
,
2019
, “
Control Effect of Micro Vortex Generators on Leading Edge of Attached Cavitation
,”
Phys. Fluids
,
31
(
4
), p.
044102
.10.1063/1.5087700
29.
Che
,
B. X.
,
Chu
,
N.
,
Cao
,
L. L.
,
Schmidt
,
S. J.
,
Likhachev
,
D.
, and
Wu
,
D. Z.
,
2019
, “
Control Effect of Micro Vortex Generators on Attached Cavitation Instability
,”
Phys. Fluids
,
31
(
6
), p.
064102
.10.1063/1.5099089
30.
Kadivar
,
E.
,
el Moctar
,
O.
, and
Javadi
,
K.
,
2018
, “
Investigation of the Effect of Cavitation Passive Control on the Dynamics of Unsteady Cloud Cavitation
,”
Appl. Math. Modell.
,
64
, pp.
333
356
.10.1016/j.apm.2018.07.015
31.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Nichik
,
M. Y.
,
el Moctar
,
O.
,
Schellin
,
T. E.
, and
Pervunin
,
K. S.
,
2020
, “
Control of Unsteady Partial Cavitation and Cloud Cavitation in Marine Engineering and Hydraulic Systems
,”
Phys. Fluids
,
32
(
5
), p.
052108
.10.1063/5.0006560
32.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Pervunin
,
K. S.
, and
el Moctar
,
O.
,
2020
, “
Cavitation Control Using Cylindrical Cavitating-Bubble Generators (CCGs): Experiments on a Benchmark CAV2003 Hydrofoil
,”
Int. J. Multiphase Flow
,
125
, p.
103186
.10.1016/j.ijmultiphaseflow.2019.103186
33.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 3.https://www.researchgate.net/publication/306205415_A_twophase_flow_model_for_predicting_cavitation_dynamics
34.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
AIAA
Paper No. 2003-0767.10.2514/6.2003-767
35.
Leroux
,
J. B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
.10.1115/1.1627835
36.
Long
,
X. P.
,
Cheng
,
H. Y.
,
Ji
,
B.
, and
Arndt
,
R. E. A.
,
2017
, “
Numerical Investigation of Attached Cavitation Shedding Dynamics Around the Clark-Y Hydrofoil With the FBDCM and an Integral Method
,”
Ocean Eng.
,
137
, pp.
247
261
.10.1016/j.oceaneng.2017.03.054
37.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X. X.
, and
Wu
,
Y. L.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
38.
Vinh
,
H.
,
Dam
,
C. P.
,
Yen
,
D.
, and
Pepper
,
R. S.
,
1995
, “
Drag Prediction Algorithms for Navier-Stokes Solutions About Airfoils
,”
Proceedings of the 13th Applied Aerodynamics Conference
, San Diego, CA.10.2514/6.1995-1788
39.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
40.
Arndt
,
R. E.
,
Song
,
C. C. S.
, and
Kjeldsen
,
M.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Proceedings of the 23rd Symposium on Naval Hydrodynamics
, Val de Reuil, France.https://conservancy.umn.edu/handle/11299/49781
41.
Long
,
X. P.
,
Cheng
,
H. Y.
,
Ji
,
B.
,
Arndt
,
R. E. A.
, and
Peng
,
X. X.
,
2018
, “
Large Eddy Simulation and Euler-Lagrangian Coupling Investigation of the Transient Cavitating Turbulent Flow Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
100
, pp.
41
56
.10.1016/j.ijmultiphaseflow.2017.12.002
42.
Soldati
,
A.
, and
Banerjee
,
S.
,
1998
, “
Turbulence Modification by Large-Scale Organized Electrohydrodynamic Flows
,”
Phys. Fluids
,
10
(
7
), pp.
1742
1756
.10.1063/1.869691
43.
Naseri
,
H.
,
Koukouvinis
,
P.
,
Malgarinos
,
I.
, and
Gavaises
,
M.
,
2018
, “
On Viscoelastic Cavitating Flows: A Numerical Study
,”
Phys. Fluids
,
30
(
3
), p.
033102
.10.1063/1.5011978
44.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program 1988 in its Studying Turbulence Using Numerical Simulation Databases
, Vol.
2
, CA, pp.
193
208
.
45.
Ji
,
B.
,
Long
,
Y.
,
Long
,
X. P.
,
Qian
,
Z. D.
, and
Zhou
,
J. J.
,
2017
, “
Large Eddy Simulation of Turbulent Attached Cavitating Flow With Special Emphasis on Large Scale Structures of the Hydrofoil Wake and Turbulence-Cavitation Interactions
,”
J. Hydrodyn.
,
29
(
1
), pp.
27
39
.10.1016/S1001-6058(16)60715-1
46.
Saito
,
Y.
,
Takami
,
R.
,
Nakamori
,
I.
, and
Ikohagi
,
T.
,
2007
, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil
,”
Comput. Mech.
,
40
(
1
), pp.
85
96
.10.1007/s00466-006-0086-1
You do not currently have access to this content.