Abstract

Fluctuating jets energized by local excitations can perform operations similar to those of electric circuits but without electricity or moving parts. Some have termed these circuits “fluidic computers.” It is known that fluidic logic in a bistable two-channel splitter arrangement can occur at predictable frequencies, but uncertainty surrounds the internal flow character and how fine-scale hydrodynamic details control its self-driven oscillations. Additionally, flow rates, switching frequencies, and switching pressures “chosen” by the fluidic logic are not known a priori. A joint computational/experimental study has revealed that three families of vortex rollers compete for space and momentum, searching for preferred trajectories. The rollers were strongly three-dimensional (3D) like horseshoe vortices, but vortex tube spanwise asymmetry, in an otherwise symmetrical flow passage, was pervasive during vortex searching. Bending and localized compression were evident. Reynolds stress analysis revealed that streamwise autocorrelation dominated much of the oscillation cycle, with wall-normal normal stresses being slightly lower and then spanwise normal stresses being about half of that; uv stresses generally changed signs when the jet flipped directions. The mechanism by which the flow naturally cycles between a direct and indirect flow passage without any external influence is discovered. Specifically, at discharge pressures exceeding 18% or below 8% of the feed total pressure, conditions are favorable for the searching vortices to choose an alternate path, engaging the cyclical fluid switch and rerouting the jet up to approximately half of its maximum deflection.

References

1.
Leonard
,
S.
,
Strasser
,
W.
,
Whittle
,
J. S.
,
Volakis
,
L. I.
,
DeBellis
,
R. J.
,
Prichard
,
R.
,
Atwood
,
C. W.
, and
Dungan
,
G. C.
,
2020
, “
Reducing Aerosol Dispersion by High Flow Therapy in COVID-19: High Resolution Computational Fluid Dynamics Simulations of Particle Behavior During High Velocity Nasal Insufflation With a Simple Surgical Mask
,”
J. Am. Coll. Emerg. Physicians Open
,
1
(
4
), pp.
578
591
.10.1002/emp2.12158
2.
Burns
,
H. L.
,
1966
, “
Cycling Valve
,” Patent No. 3,280,832.
3.
Bertsch
,
A.
,
Bongarzone
,
A.
,
Duchamp
,
M.
,
Renaud
,
P.
, and
Gallaire
,
F.
,
2020
, “
Feedback-Free Microfluidic Oscillator With Impinging Jets
,”
Phys. Rev. Fluids
,
5
(
5
), p.
054202
.10.1103/PhysRevFluids.5.054202
4.
Tesař
,
V.
,
2007
,
Pressure-Driven Microfluidics
,
Artech House
,
Norwood, MA
.
5.
Jeong
,
H.-S.
, and
Kim
,
K.-Y.
,
2018
, “
Shape Optimization of a Feedback-Channel Fluidic Oscillator
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
169
181
.10.1080/19942060.2017.1379441
6.
Ghanami
,
S.
, and
Farhadi
,
M.
,
2019
, “
Fluidic Oscillators' Applications, Structures and Mechanisms—A Review
,”
Transp. Phenom. Nano Micro Scales
,
7
(
1
), pp.
9
27
.10.22111/TPNMS.2018.25051.1153
7.
Roberts
,
B. W.
, and
Olbricht
,
W. L.
,
2006
, “
The Distribution of Freely Suspended Particles at Microfluidic Bifurcations
,”
AIChE J.
,
52
(
1
), pp.
199
206
.10.1002/aic.10613
8.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development and Application for Flow Control
,”
AIAA
Paper No. 2013-2474.10.2514/6.2013-2474
9.
Tesař
,
V.
,
Zhong
,
S.
, and
Rasheed
,
F.
,
2013
, “
New Fluidic-Oscillator Concept for Flow-Separation Control
,”
AIAA J.
,
51
(
2
), pp.
397
405
.10.2514/1.J051791
10.
Tesař
,
V.
, and
Smyk
,
E.
,
2015
, “
Fluidic Low-Frequency Oscillator With Vortex Spin-Up Time Delay
,”
Chem. Eng. Process.: Process Intensif.
,
90
, pp.
6
15
.10.1016/j.cep.2015.02.001
11.
Mair
,
M.
,
Bacic
,
M.
, and
Ireland
,
P.
,
2019
, “
On Dynamics of Acoustically Driven Bistable Fluidic Valves
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061202
.10.1115/1.4041890
12.
Baghaei
,
M.
, and
Bergada
,
J. M.
,
2020
, “
Fluidic Oscillators, the Effect of Some Design Modifications
,”
Appl. Sci.
,
10
(
6
), p.
2105
.10.3390/app10062105
13.
Bishawi
,
M.
,
Kaplan
,
M.
,
Chidyagwai
,
S.
,
Cappiello
,
J.
,
Cherry
,
A.
,
MacLeod
,
D.
,
Gall
,
K.
,
Evans
,
N.
,
Kim
,
M.
,
Shaha
,
R.
, et al.,
2020
, “
Rapid Ventilator Splitting During COVID-19 Pandemic Using 3D Printed Devices and Numerical Modeling of 200 Million Patient Specific Air Flow Scenarios
,”
Res. Square
, epub.10.21203/rs.3.rs-48165/v1
14.
Mair
,
M.
,
Bacic
,
M.
,
Chakravarthy
,
K.
, and
Williams
,
B.
,
2021
, “
Fluid Dynamics of a Bistable Diverter Under Ultrasonic Excitation—Part II: Flow Visualization and Fundamental Mechanisms
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071202
.10.1115/1.4050084
15.
Schweitzer
,
T.
,
Hörmann
,
M.
,
Bühling
,
B.
, and
Bobusch
,
B.
,
2021
, “
Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing
,”
Fluids
,
6
(
5
), p.
171
.10.3390/fluids6050171
16.
Gopalakrishnan Meena
,
M.
, and
Taira
,
K.
,
2021
, “
Identifying Vortical Network Connectors for Turbulent Flow Modification
,”
J. Fluid Mech.
,
915
, p.
A10
.10.1017/jfm.2021.35
17.
Ling
,
Y.
,
Fuster
,
D.
,
Tryggvason
,
G.
, and
Zaleski
,
S.
,
2019
, “
A Two-Phase Mixing Layer Between Parallel Gas and Liquid Streams: Multiphase Turbulence Statistics and Influence of Interfacial Instability
,”
J. Fluid Mech.
,
859
, pp.
268
307
.10.1017/jfm.2018.825
18.
Green
,
G.
,
Vlaykov
,
D. G.
,
Mellado
,
J. P.
, and
Wilczek
,
M.
,
2020
, “
Resolved Energy Budget of Superstructures in Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
887
, p.
A21
.10.1017/jfm.2019.1008
19.
Vela-Martín
,
A.
,
2021
, “
The Synchronisation of Intense Vorticity in Isotropic Turbulence
,”
J. Fluid Mech.
,
913
, p.
R8
.10.1017/jfm.2021.153
20.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Prefilming Length and Feed Rate on Compressible Flow in a Self-Pulsating Injector
,”
Atomization Sprays
,
27
(
11
), pp.
929
947
.10.1615/AtomizSpr.2017020111
21.
Lucangelo
,
U.
,
Bernabe
,
F.
, and
Blanch
,
L.
,
2007
, “
Lung Mechanics at the Bedside: Make It Simple
,”
Curr. Opin. Crit. Care
,
13
(
1
), pp.
64
72
.10.1097/MCC.0b013e32801162df
22.
Wonders
,
A. G.
,
Jenkins
,
H. W.
, Jr.,
Partin
,
L. R.
,
Strasser
,
W. S.
, and
De Vreede
,
M.
,
2009
, “
Optimized Liquid-Phase Oxidation
,” U.S. Patent No. 7,589,231.
23.
Strasser
,
W.
,
2021
, “
Toward Atomization for Green Energy: Viscous Slurry Core Disruption by Feed Inversion
,”
Atomization Sprays
,
31
(
6
), pp.
23
43
.10.1615/AtomizSpr.2021035252
24.
Margolin
,
L. G.
,
Rider
,
W. J.
, and
Grinstein
,
F. F.
,
2006
, “
Modeling Turbulent Flow With Implicit LES
,”
J. Turbul.
,
7
, p.
N15
.10.1080/14685240500331595
25.
Adedoyin
,
A. A.
,
Walters
,
D. K.
, and
Bhushan
,
S.
,
2015
, “
Investigation of Turbulence Model and Numerical Scheme Combinations for Practical Finite Volume Large Eddy Simulations
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
324
342
.10.1080/19942060.2015.1028151
26.
Celik
,
I.
,
Klein
,
M.
, and
Janicka
,
J.
,
2009
, “
Assessment Measures for Engineering LES Applications
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031102
.10.1115/1.3059703
27.
Gao
,
J.
,
Agarwal
,
K.
, and
Katz
,
J.
,
2021
, “
Experimental Investigation of the Three-Dimensional Flow Structure Around a Pair of Cubes Immersed in the Inner Part of a Turbulent Channel Flow
,”
J. Fluid Mech.
,
918
, p.
A31
.10.1017/jfm.2021.184
28.
Vincent
,
A.
, and
Meneguzzi
,
M.
,
1994
, “
The Dynamics of Vorticity Tubes in Homogeneous Turbulence
,”
J. Fluid Mech.
,
258
, pp.
245
254
.10.1017/S0022112094003319
You do not currently have access to this content.